Abstract

An effective pump scheme for the design of broadband and flat gain spectrum Raman fiber amplifiers is proposed. This novel approach uses a new shooting algorithm based on a modified Newton-Raphson method and a contraction factor to solve the two point boundary problems of Raman coupled equations more stably and efficiently. In combination with an improved particle swarm optimization method, which improves the efficiency and convergence rate by introducing a new parameter called velocity acceptability probability, this scheme optimizes the wavelengths and power levels for the pumps quickly and accurately. Several broadband Raman fiber amplifiers in C + L band with optimized pump parameters are designed. An amplifier of 4 pumps is designed to deliver an average on-off gain of 13.3 dB for a bandwidth of 80 nm, with about ± 0.5 dB in band maximum gain ripples.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Puc, D. I. Chang, G. Grosso, J. Ellison, R. Oberland, S. Burtsev, P. A. Perrier, W. Pelouch, and S. Webb, “L-band unrepeatered WDM experiment over 451 km using all-Raman amplification and ROPA,” In Proc. LEOS, 2008, pp. 485–486.
  2. K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240-km CWDM Transmission Using Cascaded SOA Raman Hybrid Amplifiers With 70-nm Bandwidth,” IEEE Photon. Technol. Lett. 18(2), 328–330 (2006).
    [CrossRef]
  3. J. Bromage, “Raman Amplification for Fiber Communications Systems,” J. Lightwave Technol. 22(1), 79–93 (2004).
    [CrossRef]
  4. V. E. Perlin and H. G. Winful, “On distributed Raman amplification for ultrabroad-band long-haul WDM systems,” J. Lightwave Technol. 20(3), 409–416 (2002).
    [CrossRef]
  5. M. Giltrelli and M. Santagiustina, “Semianalytical approach to the gain ripple minimization in multiple pump fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 16(11), 2454–2456 (2004).
    [CrossRef]
  6. Y. Emori, K. Tanaka, and S. Namiki, “100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit,” Electron. Lett. 35(16), 1355–1356 (1999).
    [CrossRef]
  7. M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “Automatic design scheme for optical-fiber Raman amplifiers backward-pumped with multiple laser diode pumps,” IEEE Photon. Technol. Lett. 13(9), 948–950 (2001).
    [CrossRef]
  8. M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “New design scheme for multiple-pump Raman fiber amplifiers using a simulated annealing algorithm,” Microw. Opt. Technol. Lett. 30(6), 434–436 (2001).
    [CrossRef]
  9. H. Jiang, K. Xie, and Y. Wang, “Photonic crystal fiber for use in fiber Raman amplifiers,” Electron. Lett. 44(13), 796–798 (2008).
    [CrossRef]
  10. H. M. Jiang, K. Xie, and Y. F. Wang, “Novel asymmetrical twin-core photonic crystal fiber for gain-flattened Raman amplifier,” Sci. China, Ser. E: Technol. Sci. 52(8), 2412–2417 (2009).
    [CrossRef]
  11. H. M. Jiang, K. Xie, and Y. F. Wang, “C band single pump photonic crystal fiber Raman amplifier,” Chin. Sci. Bull. 55(6), 555–559 (2010).
    [CrossRef]
  12. B. Neto, A. L. Teixeira, N. Wada, and P. S. André, “Efficient use of hybrid Genetic Algorithms in the gain optimization of distributed Raman amplifiers,” Opt. Express 15(26), 17520–17528 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17520 .
    [CrossRef] [PubMed]
  13. X. Liu and B. Lee, “Optimal design of fiber Raman amplifier based on hybrid genetic algorithm,” IEEE Photon. Technol. Lett. 16(2), 428–430 (2004).
    [CrossRef]
  14. S. Cui, J. Liu, and X. Ma, “A novel efficient optimal design method for gain-flattened multiwavelength pumped fiber Raman amplifier,” IEEE Photon. Technol. Lett. 16(11), 2451–2453 (2004).
    [CrossRef]
  15. V. E. Perlin and H. G. Winful, “Optimal design of flat-gain wide-band fiber Raman amplifiers,” J. Lightwave Technol. 20(2), 250–254 (2002).
    [CrossRef]
  16. J. Zhou, J. Chen, X. Li, G. Wu, Y. Wang, and W. Jiang, “Robust, compact, and flexible neural model for a fiber Raman amplifier,” J. Lightwave Technol. 24(6), 2362–2367 (2006).
    [CrossRef]
  17. P. Xiao, Q. Zeng, J. Huang, and J. Liu, “Pump optimal configuration algorithm for multi-pumped sources of distributed Raman fiber amplifiers,” Proc. SPIE 4906, 433–441 (2002).
    [CrossRef]
  18. Z. Lalidastjerdi, F. Kroushavi, and M. Rahmani, “An efficient shooting method for fiber amplifiers and lasers,” Opt. Laser Technol. 40(8), 1041–1046 (2008).
    [CrossRef]
  19. X. Liu and B. Lee, “Effective shooting algorithm and its application to fiber amplifiers,” Opt. Express 11(12), 1452–1461 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-12-1452 .
    [CrossRef] [PubMed]
  20. J. Hu, B. S. Marks, Q. Zhang, and C. R. Menyuk, “A shooting algorithm to model backward-pumped Raman amplifiers,” In Proc. LEOS, 1, 246–247 (2003).
  21. J. Ning, Q. Han, Z. Chen, J. Li, and X. Li, “A powerful simple shooting method for designing multi-pumped fibre Raman amplifiers,” Chin. Phys. Lett. 21(11), 2184–2187 (2004).
    [CrossRef]
  22. Q. Han, J. Ning, H. Zhang, and Z. Chen, “Novel shooting algorithm for highly efficient analysis of fiber Raman amplifiers,” J. Lightwave Technol. 24(4), 1946–1952 (2006).
    [CrossRef]
  23. X. Liu and M. Zhang, “An effective method for two-point boundary value problems in Raman amplifier propagation equations,” Opt. Commun. 235(1-3), 75–82 (2004).
    [CrossRef]
  24. S. M. Roberts, and J. S. Shipman, Two-point boundary value problems: shooting methods, (New York: American Elsevier, 1972), Chap. 6 pp. 111–114.
  25. R. Eberhart, and J. Kennedy, “A new optimizer using particle swarm theory,” In Proc. Int. Symp. Micromechatronics. Hum. Sci., 1995, pp. 39–43.
  26. J. Kennedy, and R. Eberhart, “Particle swarm optimization,” In Proc. IEEE Int. Conf. Neural Networks, 1995, pp. 1942–1948.
  27. E. C. Laskari, K. E. Parsopoulos, and M. N. Vrahatis, “Particle swarm optimization for minimax problems,” In: Proc. IEEE Conf. Evol. Comput., 2002, pp. 1576–1581.
  28. R. Mendes, P. Cortez, M. Rocha, and J. Neves, “Particle swarms for feed forward neural network training,” In Proc. Int. Jt. Conf. Neural Networks, 2002, pp. 1895–1899.
  29. H. M. Jiang, K. Xie, and Y. F. Wang, “Design of multi-pumped Raman fiber amplifier by particle swarm optimization,” J. Optoelectron., Laser 15, 1190–1193 (2004) (in Chinese).
  30. H. M. Jiang, K. Xie, and Y. F. Wang, “Novel design method for a multi-wavelength backward-pumped fiber raman amplifier to achieve a flat gain spectrum,” In Proc. Int. Conf. Opt. Commun. Networks, 2005, pp. 30–32.
  31. A. Mowla and N. Granpayeh, “Design of a flat-gain multipumped distributed fiber Raman amplifier by particle swarm optimization,” J. Opt. Soc. Am. A 25(12), 3059–3066 (2008).
    [CrossRef]
  32. A. Mowla and N. Granpayeh, “Optimum design of a hybrid erbium-doped fiber amplifier/fiber Raman amplifier using particle swarm optimization,” Appl. Opt. 48(5), 979–984 (2009).
    [CrossRef] [PubMed]
  33. H. M. Jiang, K. Xie, and Y. F. Wang, “Shooting algorithm and particle swarm optimization based raman fiber amplifiers gain spectra design,” Opt. Commun. (to be published), doi:.
    [PubMed]
  34. Y. Shi, and R. Eberhart, “A modified particle swarm optimizer,” In Proc. IEEE Conf. Evol. Comput., 1998, pp. 69–73.
  35. X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Trans. Evol. Comput. 3(2), 82–102 (1999).
    [CrossRef]
  36. X. Liu and Y. Li, “Efficient algorithm and optimization for broadband Raman amplifiers,” Opt. Express 12(4), 564–573 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-564 .
    [CrossRef] [PubMed]
  37. X. Liu and Y. Li, “Optimizing the bandwidth and noise performance of distributed multi-pump Raman amplifiers,” Opt. Commun. 230(4-6), 425–431 (2004).
    [CrossRef]

2010 (1)

H. M. Jiang, K. Xie, and Y. F. Wang, “C band single pump photonic crystal fiber Raman amplifier,” Chin. Sci. Bull. 55(6), 555–559 (2010).
[CrossRef]

2009 (2)

H. M. Jiang, K. Xie, and Y. F. Wang, “Novel asymmetrical twin-core photonic crystal fiber for gain-flattened Raman amplifier,” Sci. China, Ser. E: Technol. Sci. 52(8), 2412–2417 (2009).
[CrossRef]

A. Mowla and N. Granpayeh, “Optimum design of a hybrid erbium-doped fiber amplifier/fiber Raman amplifier using particle swarm optimization,” Appl. Opt. 48(5), 979–984 (2009).
[CrossRef] [PubMed]

2008 (3)

A. Mowla and N. Granpayeh, “Design of a flat-gain multipumped distributed fiber Raman amplifier by particle swarm optimization,” J. Opt. Soc. Am. A 25(12), 3059–3066 (2008).
[CrossRef]

H. Jiang, K. Xie, and Y. Wang, “Photonic crystal fiber for use in fiber Raman amplifiers,” Electron. Lett. 44(13), 796–798 (2008).
[CrossRef]

Z. Lalidastjerdi, F. Kroushavi, and M. Rahmani, “An efficient shooting method for fiber amplifiers and lasers,” Opt. Laser Technol. 40(8), 1041–1046 (2008).
[CrossRef]

2007 (1)

2006 (3)

2004 (9)

X. Liu and Y. Li, “Optimizing the bandwidth and noise performance of distributed multi-pump Raman amplifiers,” Opt. Commun. 230(4-6), 425–431 (2004).
[CrossRef]

X. Liu and M. Zhang, “An effective method for two-point boundary value problems in Raman amplifier propagation equations,” Opt. Commun. 235(1-3), 75–82 (2004).
[CrossRef]

H. M. Jiang, K. Xie, and Y. F. Wang, “Design of multi-pumped Raman fiber amplifier by particle swarm optimization,” J. Optoelectron., Laser 15, 1190–1193 (2004) (in Chinese).

J. Ning, Q. Han, Z. Chen, J. Li, and X. Li, “A powerful simple shooting method for designing multi-pumped fibre Raman amplifiers,” Chin. Phys. Lett. 21(11), 2184–2187 (2004).
[CrossRef]

X. Liu and B. Lee, “Optimal design of fiber Raman amplifier based on hybrid genetic algorithm,” IEEE Photon. Technol. Lett. 16(2), 428–430 (2004).
[CrossRef]

S. Cui, J. Liu, and X. Ma, “A novel efficient optimal design method for gain-flattened multiwavelength pumped fiber Raman amplifier,” IEEE Photon. Technol. Lett. 16(11), 2451–2453 (2004).
[CrossRef]

M. Giltrelli and M. Santagiustina, “Semianalytical approach to the gain ripple minimization in multiple pump fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 16(11), 2454–2456 (2004).
[CrossRef]

X. Liu and Y. Li, “Efficient algorithm and optimization for broadband Raman amplifiers,” Opt. Express 12(4), 564–573 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-564 .
[CrossRef] [PubMed]

J. Bromage, “Raman Amplification for Fiber Communications Systems,” J. Lightwave Technol. 22(1), 79–93 (2004).
[CrossRef]

2003 (1)

2002 (3)

2001 (2)

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “Automatic design scheme for optical-fiber Raman amplifiers backward-pumped with multiple laser diode pumps,” IEEE Photon. Technol. Lett. 13(9), 948–950 (2001).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “New design scheme for multiple-pump Raman fiber amplifiers using a simulated annealing algorithm,” Microw. Opt. Technol. Lett. 30(6), 434–436 (2001).
[CrossRef]

1999 (2)

Y. Emori, K. Tanaka, and S. Namiki, “100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit,” Electron. Lett. 35(16), 1355–1356 (1999).
[CrossRef]

X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Trans. Evol. Comput. 3(2), 82–102 (1999).
[CrossRef]

André, P. S.

Bromage, J.

Chen, J.

J. Zhou, J. Chen, X. Li, G. Wu, Y. Wang, and W. Jiang, “Robust, compact, and flexible neural model for a fiber Raman amplifier,” J. Lightwave Technol. 24(6), 2362–2367 (2006).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “New design scheme for multiple-pump Raman fiber amplifiers using a simulated annealing algorithm,” Microw. Opt. Technol. Lett. 30(6), 434–436 (2001).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “New design scheme for multiple-pump Raman fiber amplifiers using a simulated annealing algorithm,” Microw. Opt. Technol. Lett. 30(6), 434–436 (2001).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “Automatic design scheme for optical-fiber Raman amplifiers backward-pumped with multiple laser diode pumps,” IEEE Photon. Technol. Lett. 13(9), 948–950 (2001).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “Automatic design scheme for optical-fiber Raman amplifiers backward-pumped with multiple laser diode pumps,” IEEE Photon. Technol. Lett. 13(9), 948–950 (2001).
[CrossRef]

Chen, Z.

Q. Han, J. Ning, H. Zhang, and Z. Chen, “Novel shooting algorithm for highly efficient analysis of fiber Raman amplifiers,” J. Lightwave Technol. 24(4), 1946–1952 (2006).
[CrossRef]

J. Ning, Q. Han, Z. Chen, J. Li, and X. Li, “A powerful simple shooting method for designing multi-pumped fibre Raman amplifiers,” Chin. Phys. Lett. 21(11), 2184–2187 (2004).
[CrossRef]

Cui, S.

S. Cui, J. Liu, and X. Ma, “A novel efficient optimal design method for gain-flattened multiwavelength pumped fiber Raman amplifier,” IEEE Photon. Technol. Lett. 16(11), 2451–2453 (2004).
[CrossRef]

Emori, Y.

Y. Emori, K. Tanaka, and S. Namiki, “100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit,” Electron. Lett. 35(16), 1355–1356 (1999).
[CrossRef]

Frigo, N. J.

K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240-km CWDM Transmission Using Cascaded SOA Raman Hybrid Amplifiers With 70-nm Bandwidth,” IEEE Photon. Technol. Lett. 18(2), 328–330 (2006).
[CrossRef]

Giltrelli, M.

M. Giltrelli and M. Santagiustina, “Semianalytical approach to the gain ripple minimization in multiple pump fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 16(11), 2454–2456 (2004).
[CrossRef]

Granpayeh, N.

Han, Q.

Q. Han, J. Ning, H. Zhang, and Z. Chen, “Novel shooting algorithm for highly efficient analysis of fiber Raman amplifiers,” J. Lightwave Technol. 24(4), 1946–1952 (2006).
[CrossRef]

J. Ning, Q. Han, Z. Chen, J. Li, and X. Li, “A powerful simple shooting method for designing multi-pumped fibre Raman amplifiers,” Chin. Phys. Lett. 21(11), 2184–2187 (2004).
[CrossRef]

Hemenway, B. R.

K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240-km CWDM Transmission Using Cascaded SOA Raman Hybrid Amplifiers With 70-nm Bandwidth,” IEEE Photon. Technol. Lett. 18(2), 328–330 (2006).
[CrossRef]

Huang, J.

P. Xiao, Q. Zeng, J. Huang, and J. Liu, “Pump optimal configuration algorithm for multi-pumped sources of distributed Raman fiber amplifiers,” Proc. SPIE 4906, 433–441 (2002).
[CrossRef]

Iannone, P. P.

K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240-km CWDM Transmission Using Cascaded SOA Raman Hybrid Amplifiers With 70-nm Bandwidth,” IEEE Photon. Technol. Lett. 18(2), 328–330 (2006).
[CrossRef]

Jiang, H.

H. Jiang, K. Xie, and Y. Wang, “Photonic crystal fiber for use in fiber Raman amplifiers,” Electron. Lett. 44(13), 796–798 (2008).
[CrossRef]

Jiang, H. M.

H. M. Jiang, K. Xie, and Y. F. Wang, “C band single pump photonic crystal fiber Raman amplifier,” Chin. Sci. Bull. 55(6), 555–559 (2010).
[CrossRef]

H. M. Jiang, K. Xie, and Y. F. Wang, “Novel asymmetrical twin-core photonic crystal fiber for gain-flattened Raman amplifier,” Sci. China, Ser. E: Technol. Sci. 52(8), 2412–2417 (2009).
[CrossRef]

H. M. Jiang, K. Xie, and Y. F. Wang, “Design of multi-pumped Raman fiber amplifier by particle swarm optimization,” J. Optoelectron., Laser 15, 1190–1193 (2004) (in Chinese).

H. M. Jiang, K. Xie, and Y. F. Wang, “Shooting algorithm and particle swarm optimization based raman fiber amplifiers gain spectra design,” Opt. Commun. (to be published), doi:.
[PubMed]

Jiang, W.

J. Zhou, J. Chen, X. Li, G. Wu, Y. Wang, and W. Jiang, “Robust, compact, and flexible neural model for a fiber Raman amplifier,” J. Lightwave Technol. 24(6), 2362–2367 (2006).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “New design scheme for multiple-pump Raman fiber amplifiers using a simulated annealing algorithm,” Microw. Opt. Technol. Lett. 30(6), 434–436 (2001).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “Automatic design scheme for optical-fiber Raman amplifiers backward-pumped with multiple laser diode pumps,” IEEE Photon. Technol. Lett. 13(9), 948–950 (2001).
[CrossRef]

Kroushavi, F.

Z. Lalidastjerdi, F. Kroushavi, and M. Rahmani, “An efficient shooting method for fiber amplifiers and lasers,” Opt. Laser Technol. 40(8), 1041–1046 (2008).
[CrossRef]

Lalidastjerdi, Z.

Z. Lalidastjerdi, F. Kroushavi, and M. Rahmani, “An efficient shooting method for fiber amplifiers and lasers,” Opt. Laser Technol. 40(8), 1041–1046 (2008).
[CrossRef]

Lee, B.

X. Liu and B. Lee, “Optimal design of fiber Raman amplifier based on hybrid genetic algorithm,” IEEE Photon. Technol. Lett. 16(2), 428–430 (2004).
[CrossRef]

X. Liu and B. Lee, “Effective shooting algorithm and its application to fiber amplifiers,” Opt. Express 11(12), 1452–1461 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-12-1452 .
[CrossRef] [PubMed]

Li, J.

J. Ning, Q. Han, Z. Chen, J. Li, and X. Li, “A powerful simple shooting method for designing multi-pumped fibre Raman amplifiers,” Chin. Phys. Lett. 21(11), 2184–2187 (2004).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “New design scheme for multiple-pump Raman fiber amplifiers using a simulated annealing algorithm,” Microw. Opt. Technol. Lett. 30(6), 434–436 (2001).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “Automatic design scheme for optical-fiber Raman amplifiers backward-pumped with multiple laser diode pumps,” IEEE Photon. Technol. Lett. 13(9), 948–950 (2001).
[CrossRef]

Li, X.

J. Zhou, J. Chen, X. Li, G. Wu, Y. Wang, and W. Jiang, “Robust, compact, and flexible neural model for a fiber Raman amplifier,” J. Lightwave Technol. 24(6), 2362–2367 (2006).
[CrossRef]

J. Ning, Q. Han, Z. Chen, J. Li, and X. Li, “A powerful simple shooting method for designing multi-pumped fibre Raman amplifiers,” Chin. Phys. Lett. 21(11), 2184–2187 (2004).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “New design scheme for multiple-pump Raman fiber amplifiers using a simulated annealing algorithm,” Microw. Opt. Technol. Lett. 30(6), 434–436 (2001).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “Automatic design scheme for optical-fiber Raman amplifiers backward-pumped with multiple laser diode pumps,” IEEE Photon. Technol. Lett. 13(9), 948–950 (2001).
[CrossRef]

Li, Y.

X. Liu and Y. Li, “Optimizing the bandwidth and noise performance of distributed multi-pump Raman amplifiers,” Opt. Commun. 230(4-6), 425–431 (2004).
[CrossRef]

X. Liu and Y. Li, “Efficient algorithm and optimization for broadband Raman amplifiers,” Opt. Express 12(4), 564–573 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-564 .
[CrossRef] [PubMed]

Lin, G.

X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Trans. Evol. Comput. 3(2), 82–102 (1999).
[CrossRef]

Liu, J.

S. Cui, J. Liu, and X. Ma, “A novel efficient optimal design method for gain-flattened multiwavelength pumped fiber Raman amplifier,” IEEE Photon. Technol. Lett. 16(11), 2451–2453 (2004).
[CrossRef]

P. Xiao, Q. Zeng, J. Huang, and J. Liu, “Pump optimal configuration algorithm for multi-pumped sources of distributed Raman fiber amplifiers,” Proc. SPIE 4906, 433–441 (2002).
[CrossRef]

Liu, X.

X. Liu and B. Lee, “Optimal design of fiber Raman amplifier based on hybrid genetic algorithm,” IEEE Photon. Technol. Lett. 16(2), 428–430 (2004).
[CrossRef]

X. Liu and M. Zhang, “An effective method for two-point boundary value problems in Raman amplifier propagation equations,” Opt. Commun. 235(1-3), 75–82 (2004).
[CrossRef]

X. Liu and Y. Li, “Efficient algorithm and optimization for broadband Raman amplifiers,” Opt. Express 12(4), 564–573 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-564 .
[CrossRef] [PubMed]

X. Liu and Y. Li, “Optimizing the bandwidth and noise performance of distributed multi-pump Raman amplifiers,” Opt. Commun. 230(4-6), 425–431 (2004).
[CrossRef]

X. Liu and B. Lee, “Effective shooting algorithm and its application to fiber amplifiers,” Opt. Express 11(12), 1452–1461 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-12-1452 .
[CrossRef] [PubMed]

Liu, Y.

X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Trans. Evol. Comput. 3(2), 82–102 (1999).
[CrossRef]

Ma, X.

S. Cui, J. Liu, and X. Ma, “A novel efficient optimal design method for gain-flattened multiwavelength pumped fiber Raman amplifier,” IEEE Photon. Technol. Lett. 16(11), 2451–2453 (2004).
[CrossRef]

Mowla, A.

Namiki, S.

Y. Emori, K. Tanaka, and S. Namiki, “100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit,” Electron. Lett. 35(16), 1355–1356 (1999).
[CrossRef]

Neto, B.

Ning, J.

Q. Han, J. Ning, H. Zhang, and Z. Chen, “Novel shooting algorithm for highly efficient analysis of fiber Raman amplifiers,” J. Lightwave Technol. 24(4), 1946–1952 (2006).
[CrossRef]

J. Ning, Q. Han, Z. Chen, J. Li, and X. Li, “A powerful simple shooting method for designing multi-pumped fibre Raman amplifiers,” Chin. Phys. Lett. 21(11), 2184–2187 (2004).
[CrossRef]

Perlin, V. E.

Rahmani, M.

Z. Lalidastjerdi, F. Kroushavi, and M. Rahmani, “An efficient shooting method for fiber amplifiers and lasers,” Opt. Laser Technol. 40(8), 1041–1046 (2008).
[CrossRef]

Reichmann, K. C.

K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240-km CWDM Transmission Using Cascaded SOA Raman Hybrid Amplifiers With 70-nm Bandwidth,” IEEE Photon. Technol. Lett. 18(2), 328–330 (2006).
[CrossRef]

Santagiustina, M.

M. Giltrelli and M. Santagiustina, “Semianalytical approach to the gain ripple minimization in multiple pump fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 16(11), 2454–2456 (2004).
[CrossRef]

Tanaka, K.

Y. Emori, K. Tanaka, and S. Namiki, “100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit,” Electron. Lett. 35(16), 1355–1356 (1999).
[CrossRef]

Teixeira, A. L.

Wada, N.

Wang, Y.

H. Jiang, K. Xie, and Y. Wang, “Photonic crystal fiber for use in fiber Raman amplifiers,” Electron. Lett. 44(13), 796–798 (2008).
[CrossRef]

J. Zhou, J. Chen, X. Li, G. Wu, Y. Wang, and W. Jiang, “Robust, compact, and flexible neural model for a fiber Raman amplifier,” J. Lightwave Technol. 24(6), 2362–2367 (2006).
[CrossRef]

Wang, Y. F.

H. M. Jiang, K. Xie, and Y. F. Wang, “C band single pump photonic crystal fiber Raman amplifier,” Chin. Sci. Bull. 55(6), 555–559 (2010).
[CrossRef]

H. M. Jiang, K. Xie, and Y. F. Wang, “Novel asymmetrical twin-core photonic crystal fiber for gain-flattened Raman amplifier,” Sci. China, Ser. E: Technol. Sci. 52(8), 2412–2417 (2009).
[CrossRef]

H. M. Jiang, K. Xie, and Y. F. Wang, “Design of multi-pumped Raman fiber amplifier by particle swarm optimization,” J. Optoelectron., Laser 15, 1190–1193 (2004) (in Chinese).

H. M. Jiang, K. Xie, and Y. F. Wang, “Shooting algorithm and particle swarm optimization based raman fiber amplifiers gain spectra design,” Opt. Commun. (to be published), doi:.
[PubMed]

Winful, H. G.

Wu, G.

Xiao, P.

P. Xiao, Q. Zeng, J. Huang, and J. Liu, “Pump optimal configuration algorithm for multi-pumped sources of distributed Raman fiber amplifiers,” Proc. SPIE 4906, 433–441 (2002).
[CrossRef]

Xie, K.

H. M. Jiang, K. Xie, and Y. F. Wang, “C band single pump photonic crystal fiber Raman amplifier,” Chin. Sci. Bull. 55(6), 555–559 (2010).
[CrossRef]

H. M. Jiang, K. Xie, and Y. F. Wang, “Novel asymmetrical twin-core photonic crystal fiber for gain-flattened Raman amplifier,” Sci. China, Ser. E: Technol. Sci. 52(8), 2412–2417 (2009).
[CrossRef]

H. Jiang, K. Xie, and Y. Wang, “Photonic crystal fiber for use in fiber Raman amplifiers,” Electron. Lett. 44(13), 796–798 (2008).
[CrossRef]

H. M. Jiang, K. Xie, and Y. F. Wang, “Design of multi-pumped Raman fiber amplifier by particle swarm optimization,” J. Optoelectron., Laser 15, 1190–1193 (2004) (in Chinese).

H. M. Jiang, K. Xie, and Y. F. Wang, “Shooting algorithm and particle swarm optimization based raman fiber amplifiers gain spectra design,” Opt. Commun. (to be published), doi:.
[PubMed]

Yan, M.

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “Automatic design scheme for optical-fiber Raman amplifiers backward-pumped with multiple laser diode pumps,” IEEE Photon. Technol. Lett. 13(9), 948–950 (2001).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “New design scheme for multiple-pump Raman fiber amplifiers using a simulated annealing algorithm,” Microw. Opt. Technol. Lett. 30(6), 434–436 (2001).
[CrossRef]

Yao, X.

X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Trans. Evol. Comput. 3(2), 82–102 (1999).
[CrossRef]

Zeng, Q.

P. Xiao, Q. Zeng, J. Huang, and J. Liu, “Pump optimal configuration algorithm for multi-pumped sources of distributed Raman fiber amplifiers,” Proc. SPIE 4906, 433–441 (2002).
[CrossRef]

Zhang, H.

Zhang, M.

X. Liu and M. Zhang, “An effective method for two-point boundary value problems in Raman amplifier propagation equations,” Opt. Commun. 235(1-3), 75–82 (2004).
[CrossRef]

Zhou, J.

Zhou, X.

K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240-km CWDM Transmission Using Cascaded SOA Raman Hybrid Amplifiers With 70-nm Bandwidth,” IEEE Photon. Technol. Lett. 18(2), 328–330 (2006).
[CrossRef]

Appl. Opt. (1)

Chin. Phys. Lett. (1)

J. Ning, Q. Han, Z. Chen, J. Li, and X. Li, “A powerful simple shooting method for designing multi-pumped fibre Raman amplifiers,” Chin. Phys. Lett. 21(11), 2184–2187 (2004).
[CrossRef]

Chin. Sci. Bull. (1)

H. M. Jiang, K. Xie, and Y. F. Wang, “C band single pump photonic crystal fiber Raman amplifier,” Chin. Sci. Bull. 55(6), 555–559 (2010).
[CrossRef]

Electron. Lett. (2)

Y. Emori, K. Tanaka, and S. Namiki, “100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit,” Electron. Lett. 35(16), 1355–1356 (1999).
[CrossRef]

H. Jiang, K. Xie, and Y. Wang, “Photonic crystal fiber for use in fiber Raman amplifiers,” Electron. Lett. 44(13), 796–798 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “Automatic design scheme for optical-fiber Raman amplifiers backward-pumped with multiple laser diode pumps,” IEEE Photon. Technol. Lett. 13(9), 948–950 (2001).
[CrossRef]

K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240-km CWDM Transmission Using Cascaded SOA Raman Hybrid Amplifiers With 70-nm Bandwidth,” IEEE Photon. Technol. Lett. 18(2), 328–330 (2006).
[CrossRef]

M. Giltrelli and M. Santagiustina, “Semianalytical approach to the gain ripple minimization in multiple pump fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 16(11), 2454–2456 (2004).
[CrossRef]

X. Liu and B. Lee, “Optimal design of fiber Raman amplifier based on hybrid genetic algorithm,” IEEE Photon. Technol. Lett. 16(2), 428–430 (2004).
[CrossRef]

S. Cui, J. Liu, and X. Ma, “A novel efficient optimal design method for gain-flattened multiwavelength pumped fiber Raman amplifier,” IEEE Photon. Technol. Lett. 16(11), 2451–2453 (2004).
[CrossRef]

IEEE Trans. Evol. Comput. (1)

X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Trans. Evol. Comput. 3(2), 82–102 (1999).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. A (1)

J. Optoelectron., Laser (1)

H. M. Jiang, K. Xie, and Y. F. Wang, “Design of multi-pumped Raman fiber amplifier by particle swarm optimization,” J. Optoelectron., Laser 15, 1190–1193 (2004) (in Chinese).

Microw. Opt. Technol. Lett. (1)

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, “New design scheme for multiple-pump Raman fiber amplifiers using a simulated annealing algorithm,” Microw. Opt. Technol. Lett. 30(6), 434–436 (2001).
[CrossRef]

Opt. Commun. (3)

H. M. Jiang, K. Xie, and Y. F. Wang, “Shooting algorithm and particle swarm optimization based raman fiber amplifiers gain spectra design,” Opt. Commun. (to be published), doi:.
[PubMed]

X. Liu and M. Zhang, “An effective method for two-point boundary value problems in Raman amplifier propagation equations,” Opt. Commun. 235(1-3), 75–82 (2004).
[CrossRef]

X. Liu and Y. Li, “Optimizing the bandwidth and noise performance of distributed multi-pump Raman amplifiers,” Opt. Commun. 230(4-6), 425–431 (2004).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

Z. Lalidastjerdi, F. Kroushavi, and M. Rahmani, “An efficient shooting method for fiber amplifiers and lasers,” Opt. Laser Technol. 40(8), 1041–1046 (2008).
[CrossRef]

Proc. SPIE (1)

P. Xiao, Q. Zeng, J. Huang, and J. Liu, “Pump optimal configuration algorithm for multi-pumped sources of distributed Raman fiber amplifiers,” Proc. SPIE 4906, 433–441 (2002).
[CrossRef]

Sci. China, Ser. E: Technol. Sci. (1)

H. M. Jiang, K. Xie, and Y. F. Wang, “Novel asymmetrical twin-core photonic crystal fiber for gain-flattened Raman amplifier,” Sci. China, Ser. E: Technol. Sci. 52(8), 2412–2417 (2009).
[CrossRef]

Other (9)

A. Puc, D. I. Chang, G. Grosso, J. Ellison, R. Oberland, S. Burtsev, P. A. Perrier, W. Pelouch, and S. Webb, “L-band unrepeatered WDM experiment over 451 km using all-Raman amplification and ROPA,” In Proc. LEOS, 2008, pp. 485–486.

J. Hu, B. S. Marks, Q. Zhang, and C. R. Menyuk, “A shooting algorithm to model backward-pumped Raman amplifiers,” In Proc. LEOS, 1, 246–247 (2003).

H. M. Jiang, K. Xie, and Y. F. Wang, “Novel design method for a multi-wavelength backward-pumped fiber raman amplifier to achieve a flat gain spectrum,” In Proc. Int. Conf. Opt. Commun. Networks, 2005, pp. 30–32.

Y. Shi, and R. Eberhart, “A modified particle swarm optimizer,” In Proc. IEEE Conf. Evol. Comput., 1998, pp. 69–73.

S. M. Roberts, and J. S. Shipman, Two-point boundary value problems: shooting methods, (New York: American Elsevier, 1972), Chap. 6 pp. 111–114.

R. Eberhart, and J. Kennedy, “A new optimizer using particle swarm theory,” In Proc. Int. Symp. Micromechatronics. Hum. Sci., 1995, pp. 39–43.

J. Kennedy, and R. Eberhart, “Particle swarm optimization,” In Proc. IEEE Int. Conf. Neural Networks, 1995, pp. 1942–1948.

E. C. Laskari, K. E. Parsopoulos, and M. N. Vrahatis, “Particle swarm optimization for minimax problems,” In: Proc. IEEE Conf. Evol. Comput., 2002, pp. 1576–1581.

R. Mendes, P. Cortez, M. Rocha, and J. Neves, “Particle swarms for feed forward neural network training,” In Proc. Int. Jt. Conf. Neural Networks, 2002, pp. 1895–1899.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Flowchart of the modified shooting algorithm.

Fig. 2
Fig. 2

Flowchart of the overall optimization procedure.

Fig. 3
Fig. 3

The on-off gain spectrum of the 4-pump RFA with optimized pump scheme.

Fig. 4
Fig. 4

The maximum gain ripples versus the normalized simulation time for the standard PSO and improved PSO.

Fig. 5
Fig. 5

The pump power levels versus the number of shooting, (a) pump 1; (b) pump 2; (c) pump 3; (d) pump 4.

Fig. 6
Fig. 6

The norm of error vector E versus the number of shooting.

Tables (5)

Tables Icon

Table 1 Parameters of the optimized pump scheme for the four-pump RFA

Tables Icon

Table 2 The target values and intermediate values of pump power levels and norm of error vector E in shooting iterations for the four-pump RFA

Tables Icon

Table 3 Optimized results for the 6-pump and 8-pump RFAs

Tables Icon

Table 4 Comparison between the convergence behavior of the basic shooting algorithm and that of the modified shooting algorithm in the design of a 4-pump RFA

Tables Icon

Table 5 The suitable contraction factor d and the number of required shootings in the design of a 4-pump RFA for the cases of very long fiber and/or very strong pump power

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

± d P j d z = v i > v j g R ( v i v j ) K eff A eff P i P j v j > v   k v j v k g R ( v j v k ) K eff A eff P j P k α j P j     ( j = 1 , 2 N )
P ' Ap  new = P ' Ap  old + Δ P ' Ap
Δ P ' Ap = J 1 E
J k j = E k / Δ P ' Ap j       ( k , j = 1 , 2 , 3 , , n )
v i d k + 1 = w v i d k + c 1 r 1 ( p i d x i d k ) + c 2 r 2 ( p g d x i d k )
x i d k + 1 = x i d k + v i d k + 1
v i d k + 1 = { w v i d k + c 1 r 1 ( p i d x i d k ) + c 2 r 2 ( p g d x i d k )   if    r 3 < c 3 0                                                                                                     else

Metrics