Abstract

We report on efficient cw high-power second harmonic generation in a periodically poled LiTaO3 crystal placed in a resonant enhancement cavity. We tested three configurations, differing in the coupling mirror reflectivity, and a maximum conversion efficiency of about 76%, corresponding to 6.1 W of green light with 8.0 W of fundamental power, was achieved. This is, to the best of our knowledge, the highest cw power ever reported using a periodically-poled crystal in an external cavity. We observed photo-thermal effect induced by photon absorption at the mirrors and in the crystal, which however does not affect stable operation of the cavity. A further effect arises for two out of the three configurations, at higher values of the input power, which degrades the performance of the locked cavity. We suggest this effect is due to the onset of competing nonlinearities in the same crystal.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Hum and M. M. Fejer, "Quasi-phasematching," C. R. Physique 8, 180-198 (2007).
    [CrossRef]
  2. G. D. Miller, R. G. Batchko,W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett. 22, 1834-1836 (1997).
    [CrossRef]
  3. S. V. Tovstonog, S. Kurimura, and K. Kitamurai, "High power continuous-wave green light generation by quasi phase matching in Mg stoichiometric lithium tantalate, " Appl. Phys. Lett. 90, 051115 (2007).
    [CrossRef]
  4. G. K. Samanta, S. Chaitanya Kumar, M. Mathew, C. Canalias, V. Pasiskevicius, F. Laurell, and M. Ebrahim-Zadeh, "High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO4," Opt. Lett. 33, 2955-2957 (2008).
    [CrossRef] [PubMed]
  5. S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, "Room-temperature stable generation of 19 Watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal," J. Lightwave Technol. 26, 3866-3871 (2008).
    [CrossRef]
  6. G. K. Samanta, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, "Stable, 9.6W, continuous-wave, single-frequency, fiber-based green source at 532 nm," Opt. Lett. 34, 1561-1563 (2009).
    [CrossRef] [PubMed]
  7. S. Chaitanya Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, "High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT," Opt. Express 17, 13711-13726 (2009).
    [CrossRef] [PubMed]
  8. G. D. Boyd and D. A. Kleinman, "Parametric Interaction of Focused Gaussian Ligth Beams," J. Appl. Phys. 39, 3597-3639 (1968).
    [CrossRef]
  9. F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, "Frequency-doubling of a CWfiber laser using PPKTP, PPMgSLT, and PPMgLN," Opt. Express 15, 12882 (2007).
    [CrossRef] [PubMed]
  10. Y. Kitaoka, K. Mizuuchi, K. Yamamoto, M. Kato, and T. Sasaki, "Intracavity second-harmonic generation with a periodically domain-inverted LiTaO3 device" Opt. Lett. 21, 1972-1974 (1996).
    [CrossRef] [PubMed]
  11. K.S. Abedin, T. Tsuritani, M. Sato, and H. Ito, "Integrated intracavity quasi-phase-matched second harmonic generation based on periodically poled Nd:LiTaO3," Appl. Phys. Lett. 70, 10-12 (1997).
    [CrossRef]
  12. Q1. R. Sarrouf, T. Badr, and J. J. Zondy, "Intracavity second-harmonic generation of diode-pumped continuous-wave, single-frequency 1.3 m Nd : YLiF4 lasers," J. Opt. A 10, 104011 (2008).
  13. A. Ashkin, G. Boyd, and J. Dziedzic, "Resonant optical second harmonic generation and mixing, IEEE J. Quantum Electr. 6, 109-124 (1966).
    [CrossRef]
  14. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, "Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities," IEEE J. Quantum Electron. 24, 913-919 (1988).
    [CrossRef]
  15. I. Juwiler and A. Arie, "Efficient frequency doubling by a phase-compensated crystal in a semimonolithic cavity," Appl. Opt. 42, 7163-7169 (2003).
    [CrossRef]
  16. F. Torabi-Goudarzi and E. Riis, "Efficient cw high-power frequency doubling in periodically poled KTP," Opt. Commun. 227, 389-403 (2003).
    [CrossRef]
  17. R. Le Targat, J.-J. Zondy, and P. Lemonde "75%-Efficiency blue generation from an intracavity PPKTP frequency doubler," Opt. Commun. 247, 471-481 (2005).
    [CrossRef]
  18. F. Villa, A. Chiummo, E. Giacobino, and A. Bramati, "High-efficiency blue-light generation with a ring cavity with periodically poled KTP," J. Opt. Soc. Am. B 24, 576-580 (2007).
    [CrossRef]
  19. P. Herskind, J. Lindballe, C. Clausen, J. L. Sørensen, and M. Drewsen, "Second-harmonic generation of light at 544 and 272 nm from an ytterbium-doped distributed-feedback fiber laser," Opt. Lett. 32, 268-270 (2007).
    [CrossRef] [PubMed]
  20. J. H. Lundeman, O. B. Jensen, P. E. Andersen, S. Andersson- Engels, B. Sumpf, G. Erbert, and P. M. Petersen, "High power 404 nm source based on second harmonic generation in PPKTP of a tapered external feedback diode laser," Opt. Express 16, 2486-2493 (2008).
    [CrossRef] [PubMed]
  21. Y.-H. Cha, K.-H Ko, G. Lim, J.-M. Han, H.-M. Park, T.-S. Kim, and D.-Y. Jeong, "External-cavity frequency doubling of a 5-W 756-nm injection-locked Ti:sapphire laser," Opt. Express 16, 4866-4871 (2008).
    [CrossRef] [PubMed]
  22. T. S¨udmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, "Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier," Opt. Express 16, 1546-1551 (2008).
    [CrossRef] [PubMed]
  23. Y. Feng, L. R. Taylor, and D. Bonaccini Calia, "25WRaman-fiber-amplifier-based 589 nm laser for a large guide star," Opt. Express 16, 19021-19026 (2009).
    [CrossRef]
  24. J. P. Anderegg, T. A. Chernysheva, D. F. Elkins, C. L. Simmons, R. C. Bishop, C. L. Pedersen, M. L. Murphy, and F. L. Williams, "RGB laser generation from fiber MOPAs coupled to external enhancement cavities," SPIE Photonics West, San Francisco 2010, paper 7578-15 (2010).
  25. A. L. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, "UV and visible absorption in LiTaO3," Proc. SPIE 3610, 44-51 (1999).
    [CrossRef]
  26. D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, nearstoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
    [CrossRef]
  27. H. Ishizuki and T. Taira, "Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device," Opt. Express 16, 16963 (2008).
    [CrossRef] [PubMed]
  28. I. Ricciardi, M. De Rosa, A. Rocco, P. Ferraro, A. Vannucci, P. Spano, and P. De Natale, "Sum-frequency generation of cw ultraviolet radiation in periodically poled LiTaO3" Opt- Lett. 34,1348-50 (2009).
    [PubMed]
  29. T. W. H¨ansch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity, Opt. Commun. 35, 441-445 (1980).
    [CrossRef]
  30. M. de Angelis, G. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency controlled laser source in the near UV based on doubling of a semiconductor diode laser," Appl. Phys. B 62, 333-338 (1996)
    [CrossRef]
  31. K. An, B. A. Sones, C. Fang-Yen, R. R. Dasari, andM.S. Feld, "Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level," Opt. Lett. 22, 1433-1435 (1997).
    [CrossRef]
  32. J. H. Chow, B. S. Sheard, D. E. McClelland, M. B. Gray, and I. C. M. Littler "Photothermal effects in passive fiber Bragg grating resonators," Opt. Lett. 30, 708-710 (2005).
    [CrossRef] [PubMed]
  33. M. Cerdonio, L. Conti, A. Heidmann and M. Pinard, "Thermoelastic effects at low temperature and quantum limits in displacements measurements," Phys. Rev. D 63, 082003 (2001).
    [CrossRef]
  34. M. De Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, "Experimental measurement of the dynamic photothermal effect in Fabry-Perot cavities for gravitational wave detectors," Phys. Rev. Lett. 89, 237402 (2002).
    [CrossRef] [PubMed]
  35. A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, "Classical and quantum signatures of competing |(2) nonlinearities," Phys. Rev. A 55, 4511-4515 (1997).
    [CrossRef]
  36. A. G. White, "Classical and quantum dynamics of optical frequency conversion," PhD Thesis, Australian National University (1997); http://photonics.anu.edu.au/qoptics/theses.htmlSee also references therein.

2009 (4)

G. K. Samanta, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, "Stable, 9.6W, continuous-wave, single-frequency, fiber-based green source at 532 nm," Opt. Lett. 34, 1561-1563 (2009).
[CrossRef] [PubMed]

S. Chaitanya Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, "High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT," Opt. Express 17, 13711-13726 (2009).
[CrossRef] [PubMed]

Y. Feng, L. R. Taylor, and D. Bonaccini Calia, "25WRaman-fiber-amplifier-based 589 nm laser for a large guide star," Opt. Express 16, 19021-19026 (2009).
[CrossRef]

I. Ricciardi, M. De Rosa, A. Rocco, P. Ferraro, A. Vannucci, P. Spano, and P. De Natale, "Sum-frequency generation of cw ultraviolet radiation in periodically poled LiTaO3" Opt- Lett. 34,1348-50 (2009).
[PubMed]

2008 (7)

H. Ishizuki and T. Taira, "Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device," Opt. Express 16, 16963 (2008).
[CrossRef] [PubMed]

J. H. Lundeman, O. B. Jensen, P. E. Andersen, S. Andersson- Engels, B. Sumpf, G. Erbert, and P. M. Petersen, "High power 404 nm source based on second harmonic generation in PPKTP of a tapered external feedback diode laser," Opt. Express 16, 2486-2493 (2008).
[CrossRef] [PubMed]

Y.-H. Cha, K.-H Ko, G. Lim, J.-M. Han, H.-M. Park, T.-S. Kim, and D.-Y. Jeong, "External-cavity frequency doubling of a 5-W 756-nm injection-locked Ti:sapphire laser," Opt. Express 16, 4866-4871 (2008).
[CrossRef] [PubMed]

T. S¨udmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, "Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier," Opt. Express 16, 1546-1551 (2008).
[CrossRef] [PubMed]

G. K. Samanta, S. Chaitanya Kumar, M. Mathew, C. Canalias, V. Pasiskevicius, F. Laurell, and M. Ebrahim-Zadeh, "High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO4," Opt. Lett. 33, 2955-2957 (2008).
[CrossRef] [PubMed]

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, "Room-temperature stable generation of 19 Watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal," J. Lightwave Technol. 26, 3866-3871 (2008).
[CrossRef]

Q1. R. Sarrouf, T. Badr, and J. J. Zondy, "Intracavity second-harmonic generation of diode-pumped continuous-wave, single-frequency 1.3 m Nd : YLiF4 lasers," J. Opt. A 10, 104011 (2008).

2007 (6)

S. V. Tovstonog, S. Kurimura, and K. Kitamurai, "High power continuous-wave green light generation by quasi phase matching in Mg stoichiometric lithium tantalate, " Appl. Phys. Lett. 90, 051115 (2007).
[CrossRef]

D. S. Hum and M. M. Fejer, "Quasi-phasematching," C. R. Physique 8, 180-198 (2007).
[CrossRef]

F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, "Frequency-doubling of a CWfiber laser using PPKTP, PPMgSLT, and PPMgLN," Opt. Express 15, 12882 (2007).
[CrossRef] [PubMed]

F. Villa, A. Chiummo, E. Giacobino, and A. Bramati, "High-efficiency blue-light generation with a ring cavity with periodically poled KTP," J. Opt. Soc. Am. B 24, 576-580 (2007).
[CrossRef]

P. Herskind, J. Lindballe, C. Clausen, J. L. Sørensen, and M. Drewsen, "Second-harmonic generation of light at 544 and 272 nm from an ytterbium-doped distributed-feedback fiber laser," Opt. Lett. 32, 268-270 (2007).
[CrossRef] [PubMed]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, nearstoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

2005 (2)

J. H. Chow, B. S. Sheard, D. E. McClelland, M. B. Gray, and I. C. M. Littler "Photothermal effects in passive fiber Bragg grating resonators," Opt. Lett. 30, 708-710 (2005).
[CrossRef] [PubMed]

R. Le Targat, J.-J. Zondy, and P. Lemonde "75%-Efficiency blue generation from an intracavity PPKTP frequency doubler," Opt. Commun. 247, 471-481 (2005).
[CrossRef]

2003 (2)

I. Juwiler and A. Arie, "Efficient frequency doubling by a phase-compensated crystal in a semimonolithic cavity," Appl. Opt. 42, 7163-7169 (2003).
[CrossRef]

F. Torabi-Goudarzi and E. Riis, "Efficient cw high-power frequency doubling in periodically poled KTP," Opt. Commun. 227, 389-403 (2003).
[CrossRef]

2002 (1)

M. De Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, "Experimental measurement of the dynamic photothermal effect in Fabry-Perot cavities for gravitational wave detectors," Phys. Rev. Lett. 89, 237402 (2002).
[CrossRef] [PubMed]

2001 (1)

M. Cerdonio, L. Conti, A. Heidmann and M. Pinard, "Thermoelastic effects at low temperature and quantum limits in displacements measurements," Phys. Rev. D 63, 082003 (2001).
[CrossRef]

1999 (1)

A. L. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, "UV and visible absorption in LiTaO3," Proc. SPIE 3610, 44-51 (1999).
[CrossRef]

1997 (4)

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, "Classical and quantum signatures of competing |(2) nonlinearities," Phys. Rev. A 55, 4511-4515 (1997).
[CrossRef]

K. An, B. A. Sones, C. Fang-Yen, R. R. Dasari, andM.S. Feld, "Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level," Opt. Lett. 22, 1433-1435 (1997).
[CrossRef]

K.S. Abedin, T. Tsuritani, M. Sato, and H. Ito, "Integrated intracavity quasi-phase-matched second harmonic generation based on periodically poled Nd:LiTaO3," Appl. Phys. Lett. 70, 10-12 (1997).
[CrossRef]

G. D. Miller, R. G. Batchko,W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett. 22, 1834-1836 (1997).
[CrossRef]

1996 (2)

Y. Kitaoka, K. Mizuuchi, K. Yamamoto, M. Kato, and T. Sasaki, "Intracavity second-harmonic generation with a periodically domain-inverted LiTaO3 device" Opt. Lett. 21, 1972-1974 (1996).
[CrossRef] [PubMed]

M. de Angelis, G. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency controlled laser source in the near UV based on doubling of a semiconductor diode laser," Appl. Phys. B 62, 333-338 (1996)
[CrossRef]

1988 (1)

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, "Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities," IEEE J. Quantum Electron. 24, 913-919 (1988).
[CrossRef]

1980 (1)

T. W. H¨ansch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity, Opt. Commun. 35, 441-445 (1980).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, "Parametric Interaction of Focused Gaussian Ligth Beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

1966 (1)

A. Ashkin, G. Boyd, and J. Dziedzic, "Resonant optical second harmonic generation and mixing, IEEE J. Quantum Electr. 6, 109-124 (1966).
[CrossRef]

Abedin, K.S.

K.S. Abedin, T. Tsuritani, M. Sato, and H. Ito, "Integrated intracavity quasi-phase-matched second harmonic generation based on periodically poled Nd:LiTaO3," Appl. Phys. Lett. 70, 10-12 (1997).
[CrossRef]

Alexandrovski, A.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, nearstoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

Alexandrovski, A. L.

A. L. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, "UV and visible absorption in LiTaO3," Proc. SPIE 3610, 44-51 (1999).
[CrossRef]

An, K.

Andersen, P. E.

Arie, A.

Ashkin, A.

A. Ashkin, G. Boyd, and J. Dziedzic, "Resonant optical second harmonic generation and mixing, IEEE J. Quantum Electr. 6, 109-124 (1966).
[CrossRef]

Bachor, H.-A.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, "Classical and quantum signatures of competing |(2) nonlinearities," Phys. Rev. A 55, 4511-4515 (1997).
[CrossRef]

Badr, T.

Q1. R. Sarrouf, T. Badr, and J. J. Zondy, "Intracavity second-harmonic generation of diode-pumped continuous-wave, single-frequency 1.3 m Nd : YLiF4 lasers," J. Opt. A 10, 104011 (2008).

Batchko, R. G.

Bonaccini Calia, D.

Y. Feng, L. R. Taylor, and D. Bonaccini Calia, "25WRaman-fiber-amplifier-based 589 nm laser for a large guide star," Opt. Express 16, 19021-19026 (2009).
[CrossRef]

Boyd, G.

A. Ashkin, G. Boyd, and J. Dziedzic, "Resonant optical second harmonic generation and mixing, IEEE J. Quantum Electr. 6, 109-124 (1966).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, "Parametric Interaction of Focused Gaussian Ligth Beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Bramati, A.

Byer, R. L.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, "Room-temperature stable generation of 19 Watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal," J. Lightwave Technol. 26, 3866-3871 (2008).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, nearstoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

G. D. Miller, R. G. Batchko,W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett. 22, 1834-1836 (1997).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, "Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities," IEEE J. Quantum Electron. 24, 913-919 (1988).
[CrossRef]

Canalias, C.

Cerdonio, M.

M. De Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, "Experimental measurement of the dynamic photothermal effect in Fabry-Perot cavities for gravitational wave detectors," Phys. Rev. Lett. 89, 237402 (2002).
[CrossRef] [PubMed]

M. Cerdonio, L. Conti, A. Heidmann and M. Pinard, "Thermoelastic effects at low temperature and quantum limits in displacements measurements," Phys. Rev. D 63, 082003 (2001).
[CrossRef]

Cha, Y.-H.

Chaitanya Kumar, S.

Chiummo, A.

Chow, J. H.

Clausen, C.

Conti, L.

M. De Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, "Experimental measurement of the dynamic photothermal effect in Fabry-Perot cavities for gravitational wave detectors," Phys. Rev. Lett. 89, 237402 (2002).
[CrossRef] [PubMed]

M. Cerdonio, L. Conti, A. Heidmann and M. Pinard, "Thermoelastic effects at low temperature and quantum limits in displacements measurements," Phys. Rev. D 63, 082003 (2001).
[CrossRef]

Couillaud, B.

T. W. H¨ansch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity, Opt. Commun. 35, 441-445 (1980).
[CrossRef]

Dajani, I.

Dasari, R. R.

de Angelis, M.

M. de Angelis, G. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency controlled laser source in the near UV based on doubling of a semiconductor diode laser," Appl. Phys. B 62, 333-338 (1996)
[CrossRef]

De Natale, P.

I. Ricciardi, M. De Rosa, A. Rocco, P. Ferraro, A. Vannucci, P. Spano, and P. De Natale, "Sum-frequency generation of cw ultraviolet radiation in periodically poled LiTaO3" Opt- Lett. 34,1348-50 (2009).
[PubMed]

M. de Angelis, G. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency controlled laser source in the near UV based on doubling of a semiconductor diode laser," Appl. Phys. B 62, 333-338 (1996)
[CrossRef]

De Rosa, M.

I. Ricciardi, M. De Rosa, A. Rocco, P. Ferraro, A. Vannucci, P. Spano, and P. De Natale, "Sum-frequency generation of cw ultraviolet radiation in periodically poled LiTaO3" Opt- Lett. 34,1348-50 (2009).
[PubMed]

M. De Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, "Experimental measurement of the dynamic photothermal effect in Fabry-Perot cavities for gravitational wave detectors," Phys. Rev. Lett. 89, 237402 (2002).
[CrossRef] [PubMed]

Digonnet, M. J. F.

Drewsen, M.

Dziedzic, J.

A. Ashkin, G. Boyd, and J. Dziedzic, "Resonant optical second harmonic generation and mixing, IEEE J. Quantum Electr. 6, 109-124 (1966).
[CrossRef]

Ebrahim-Zadeh, M.

Eguchi, N.

Fang-Yen, C.

Fejer, M. M.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, "Room-temperature stable generation of 19 Watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal," J. Lightwave Technol. 26, 3866-3871 (2008).
[CrossRef]

D. S. Hum and M. M. Fejer, "Quasi-phasematching," C. R. Physique 8, 180-198 (2007).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, nearstoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

A. L. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, "UV and visible absorption in LiTaO3," Proc. SPIE 3610, 44-51 (1999).
[CrossRef]

G. D. Miller, R. G. Batchko,W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett. 22, 1834-1836 (1997).
[CrossRef]

Feng, Y.

Y. Feng, L. R. Taylor, and D. Bonaccini Calia, "25WRaman-fiber-amplifier-based 589 nm laser for a large guide star," Opt. Express 16, 19021-19026 (2009).
[CrossRef]

Ferraro, P.

I. Ricciardi, M. De Rosa, A. Rocco, P. Ferraro, A. Vannucci, P. Spano, and P. De Natale, "Sum-frequency generation of cw ultraviolet radiation in periodically poled LiTaO3" Opt- Lett. 34,1348-50 (2009).
[PubMed]

Fort, C.

M. de Angelis, G. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency controlled laser source in the near UV based on doubling of a semiconductor diode laser," Appl. Phys. B 62, 333-338 (1996)
[CrossRef]

Foulon, G.

A. L. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, "UV and visible absorption in LiTaO3," Proc. SPIE 3610, 44-51 (1999).
[CrossRef]

Giacobino, E.

Gray, M. B.

H¨ansch, T. W.

T. W. H¨ansch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity, Opt. Commun. 35, 441-445 (1980).
[CrossRef]

Han, J.-M.

Heidmann, A.

M. Cerdonio, L. Conti, A. Heidmann and M. Pinard, "Thermoelastic effects at low temperature and quantum limits in displacements measurements," Phys. Rev. D 63, 082003 (2001).
[CrossRef]

Herskind, P.

Huang, J.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, nearstoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

Hum, D. S.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, "Room-temperature stable generation of 19 Watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal," J. Lightwave Technol. 26, 3866-3871 (2008).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, nearstoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

D. S. Hum and M. M. Fejer, "Quasi-phasematching," C. R. Physique 8, 180-198 (2007).
[CrossRef]

Imai, Y.

Ishizuki, H.

Ito, H.

K.S. Abedin, T. Tsuritani, M. Sato, and H. Ito, "Integrated intracavity quasi-phase-matched second harmonic generation based on periodically poled Nd:LiTaO3," Appl. Phys. Lett. 70, 10-12 (1997).
[CrossRef]

Jensen, O. B.

Jeong, D.-Y.

Juwiler, I.

Kato, M.

Kim, T.-S.

Kitamurai, K.

S. V. Tovstonog, S. Kurimura, and K. Kitamurai, "High power continuous-wave green light generation by quasi phase matching in Mg stoichiometric lithium tantalate, " Appl. Phys. Lett. 90, 051115 (2007).
[CrossRef]

Kitaoka, Y.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, "Parametric Interaction of Focused Gaussian Ligth Beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Knize, R. J.

Ko, K.-H

Kondilenko, V.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, nearstoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

Kontur, F. J.

Kozlovsky, W. J.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, "Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities," IEEE J. Quantum Electron. 24, 913-919 (1988).
[CrossRef]

Kubota, S.

Kurimura, S.

S. V. Tovstonog, S. Kurimura, and K. Kitamurai, "High power continuous-wave green light generation by quasi phase matching in Mg stoichiometric lithium tantalate, " Appl. Phys. Lett. 90, 051115 (2007).
[CrossRef]

Lam, P. K.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, "Classical and quantum signatures of competing |(2) nonlinearities," Phys. Rev. A 55, 4511-4515 (1997).
[CrossRef]

Laurell, F.

Le Targat, R.

R. Le Targat, J.-J. Zondy, and P. Lemonde "75%-Efficiency blue generation from an intracavity PPKTP frequency doubler," Opt. Commun. 247, 471-481 (2005).
[CrossRef]

Lee, Y.

Lemonde, P.

R. Le Targat, J.-J. Zondy, and P. Lemonde "75%-Efficiency blue generation from an intracavity PPKTP frequency doubler," Opt. Commun. 247, 471-481 (2005).
[CrossRef]

Lim, G.

Lindballe, J.

Littler, I. C. M.

Lu, Y.

Lundeman, J. H.

Marin, F.

M. De Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, "Experimental measurement of the dynamic photothermal effect in Fabry-Perot cavities for gravitational wave detectors," Phys. Rev. Lett. 89, 237402 (2002).
[CrossRef] [PubMed]

Marte, M. A. M.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, "Classical and quantum signatures of competing |(2) nonlinearities," Phys. Rev. A 55, 4511-4515 (1997).
[CrossRef]

Masuda, H.

Mathew, M.

McClelland, D. E.

J. H. Chow, B. S. Sheard, D. E. McClelland, M. B. Gray, and I. C. M. Littler "Photothermal effects in passive fiber Bragg grating resonators," Opt. Lett. 30, 708-710 (2005).
[CrossRef] [PubMed]

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, "Classical and quantum signatures of competing |(2) nonlinearities," Phys. Rev. A 55, 4511-4515 (1997).
[CrossRef]

Miller, G. D.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, nearstoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

G. D. Miller, R. G. Batchko,W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett. 22, 1834-1836 (1997).
[CrossRef]

Mizuuchi, K.

Modugno, G.

M. de Angelis, G. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency controlled laser source in the near UV based on doubling of a semiconductor diode laser," Appl. Phys. B 62, 333-338 (1996)
[CrossRef]

Myers, L. E.

A. L. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, "UV and visible absorption in LiTaO3," Proc. SPIE 3610, 44-51 (1999).
[CrossRef]

Nabors, C. D.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, "Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities," IEEE J. Quantum Electron. 24, 913-919 (1988).
[CrossRef]

Park, H.-M.

Pasiskevicius, V.

Pinard, M.

M. De Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, "Experimental measurement of the dynamic photothermal effect in Fabry-Perot cavities for gravitational wave detectors," Phys. Rev. Lett. 89, 237402 (2002).
[CrossRef] [PubMed]

M. Cerdonio, L. Conti, A. Heidmann and M. Pinard, "Thermoelastic effects at low temperature and quantum limits in displacements measurements," Phys. Rev. D 63, 082003 (2001).
[CrossRef]

Prevedelli, M.

M. de Angelis, G. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency controlled laser source in the near UV based on doubling of a semiconductor diode laser," Appl. Phys. B 62, 333-338 (1996)
[CrossRef]

Ricciardi, I.

I. Ricciardi, M. De Rosa, A. Rocco, P. Ferraro, A. Vannucci, P. Spano, and P. De Natale, "Sum-frequency generation of cw ultraviolet radiation in periodically poled LiTaO3" Opt- Lett. 34,1348-50 (2009).
[PubMed]

Riis, E.

F. Torabi-Goudarzi and E. Riis, "Efficient cw high-power frequency doubling in periodically poled KTP," Opt. Commun. 227, 389-403 (2003).
[CrossRef]

Rocco, A.

I. Ricciardi, M. De Rosa, A. Rocco, P. Ferraro, A. Vannucci, P. Spano, and P. De Natale, "Sum-frequency generation of cw ultraviolet radiation in periodically poled LiTaO3" Opt- Lett. 34,1348-50 (2009).
[PubMed]

Route, R. K.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, nearstoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

A. L. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, "UV and visible absorption in LiTaO3," Proc. SPIE 3610, 44-51 (1999).
[CrossRef]

S¨udmeyer, T.

Saito, M.

Samanta, G. K.

Sarrouf, R.

Q1. R. Sarrouf, T. Badr, and J. J. Zondy, "Intracavity second-harmonic generation of diode-pumped continuous-wave, single-frequency 1.3 m Nd : YLiF4 lasers," J. Opt. A 10, 104011 (2008).

Sasaki, T.

Sato, M.

K.S. Abedin, T. Tsuritani, M. Sato, and H. Ito, "Integrated intracavity quasi-phase-matched second harmonic generation based on periodically poled Nd:LiTaO3," Appl. Phys. Lett. 70, 10-12 (1997).
[CrossRef]

Schiller, S.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, "Classical and quantum signatures of competing |(2) nonlinearities," Phys. Rev. A 55, 4511-4515 (1997).
[CrossRef]

Sheard, B. S.

Sinha, S.

Sones, B. A.

Sørensen, J. L.

Spano, P.

I. Ricciardi, M. De Rosa, A. Rocco, P. Ferraro, A. Vannucci, P. Spano, and P. De Natale, "Sum-frequency generation of cw ultraviolet radiation in periodically poled LiTaO3" Opt- Lett. 34,1348-50 (2009).
[PubMed]

Taira, T.

Taubman, M. S.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, "Classical and quantum signatures of competing |(2) nonlinearities," Phys. Rev. A 55, 4511-4515 (1997).
[CrossRef]

Taylor, L. R.

Y. Feng, L. R. Taylor, and D. Bonaccini Calia, "25WRaman-fiber-amplifier-based 589 nm laser for a large guide star," Opt. Express 16, 19021-19026 (2009).
[CrossRef]

Tino, G.

M. de Angelis, G. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency controlled laser source in the near UV based on doubling of a semiconductor diode laser," Appl. Phys. B 62, 333-338 (1996)
[CrossRef]

Torabi-Goudarzi, F.

F. Torabi-Goudarzi and E. Riis, "Efficient cw high-power frequency doubling in periodically poled KTP," Opt. Commun. 227, 389-403 (2003).
[CrossRef]

Tovstonog, S. V.

S. V. Tovstonog, S. Kurimura, and K. Kitamurai, "High power continuous-wave green light generation by quasi phase matching in Mg stoichiometric lithium tantalate, " Appl. Phys. Lett. 90, 051115 (2007).
[CrossRef]

Tsuritani, T.

K.S. Abedin, T. Tsuritani, M. Sato, and H. Ito, "Integrated intracavity quasi-phase-matched second harmonic generation based on periodically poled Nd:LiTaO3," Appl. Phys. Lett. 70, 10-12 (1997).
[CrossRef]

Tulloch, W. M.

Urbanek, K.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, nearstoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

Urbanek, K. E.

Vannucci, A.

I. Ricciardi, M. De Rosa, A. Rocco, P. Ferraro, A. Vannucci, P. Spano, and P. De Natale, "Sum-frequency generation of cw ultraviolet radiation in periodically poled LiTaO3" Opt- Lett. 34,1348-50 (2009).
[PubMed]

Villa, F.

Weise, D. R.

White, A. G.

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, "Classical and quantum signatures of competing |(2) nonlinearities," Phys. Rev. A 55, 4511-4515 (1997).
[CrossRef]

Yamamoto, K.

Zimmermann, C.

M. de Angelis, G. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency controlled laser source in the near UV based on doubling of a semiconductor diode laser," Appl. Phys. B 62, 333-338 (1996)
[CrossRef]

Zondy, J. J.

Q1. R. Sarrouf, T. Badr, and J. J. Zondy, "Intracavity second-harmonic generation of diode-pumped continuous-wave, single-frequency 1.3 m Nd : YLiF4 lasers," J. Opt. A 10, 104011 (2008).

Zondy, J.-J.

R. Le Targat, J.-J. Zondy, and P. Lemonde "75%-Efficiency blue generation from an intracavity PPKTP frequency doubler," Opt. Commun. 247, 471-481 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

M. de Angelis, G. Tino, P. De Natale, C. Fort, G. Modugno, M. Prevedelli, C. Zimmermann, "Tunable frequency controlled laser source in the near UV based on doubling of a semiconductor diode laser," Appl. Phys. B 62, 333-338 (1996)
[CrossRef]

Appl. Phys. Lett. (2)

K.S. Abedin, T. Tsuritani, M. Sato, and H. Ito, "Integrated intracavity quasi-phase-matched second harmonic generation based on periodically poled Nd:LiTaO3," Appl. Phys. Lett. 70, 10-12 (1997).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamurai, "High power continuous-wave green light generation by quasi phase matching in Mg stoichiometric lithium tantalate, " Appl. Phys. Lett. 90, 051115 (2007).
[CrossRef]

C. R. Physique (1)

D. S. Hum and M. M. Fejer, "Quasi-phasematching," C. R. Physique 8, 180-198 (2007).
[CrossRef]

IEEE J. Quantum Electr. (1)

A. Ashkin, G. Boyd, and J. Dziedzic, "Resonant optical second harmonic generation and mixing, IEEE J. Quantum Electr. 6, 109-124 (1966).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, "Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities," IEEE J. Quantum Electron. 24, 913-919 (1988).
[CrossRef]

J. Appl. Phys. (2)

G. D. Boyd and D. A. Kleinman, "Parametric Interaction of Focused Gaussian Ligth Beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, nearstoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A (1)

Q1. R. Sarrouf, T. Badr, and J. J. Zondy, "Intracavity second-harmonic generation of diode-pumped continuous-wave, single-frequency 1.3 m Nd : YLiF4 lasers," J. Opt. A 10, 104011 (2008).

J. Opt. Soc. Am. B (1)

Opt- Lett. (1)

I. Ricciardi, M. De Rosa, A. Rocco, P. Ferraro, A. Vannucci, P. Spano, and P. De Natale, "Sum-frequency generation of cw ultraviolet radiation in periodically poled LiTaO3" Opt- Lett. 34,1348-50 (2009).
[PubMed]

Opt. Commun. (3)

T. W. H¨ansch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity, Opt. Commun. 35, 441-445 (1980).
[CrossRef]

F. Torabi-Goudarzi and E. Riis, "Efficient cw high-power frequency doubling in periodically poled KTP," Opt. Commun. 227, 389-403 (2003).
[CrossRef]

R. Le Targat, J.-J. Zondy, and P. Lemonde "75%-Efficiency blue generation from an intracavity PPKTP frequency doubler," Opt. Commun. 247, 471-481 (2005).
[CrossRef]

Opt. Express (7)

F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, "Frequency-doubling of a CWfiber laser using PPKTP, PPMgSLT, and PPMgLN," Opt. Express 15, 12882 (2007).
[CrossRef] [PubMed]

H. Ishizuki and T. Taira, "Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device," Opt. Express 16, 16963 (2008).
[CrossRef] [PubMed]

S. Chaitanya Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, "High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT," Opt. Express 17, 13711-13726 (2009).
[CrossRef] [PubMed]

J. H. Lundeman, O. B. Jensen, P. E. Andersen, S. Andersson- Engels, B. Sumpf, G. Erbert, and P. M. Petersen, "High power 404 nm source based on second harmonic generation in PPKTP of a tapered external feedback diode laser," Opt. Express 16, 2486-2493 (2008).
[CrossRef] [PubMed]

Y.-H. Cha, K.-H Ko, G. Lim, J.-M. Han, H.-M. Park, T.-S. Kim, and D.-Y. Jeong, "External-cavity frequency doubling of a 5-W 756-nm injection-locked Ti:sapphire laser," Opt. Express 16, 4866-4871 (2008).
[CrossRef] [PubMed]

T. S¨udmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, "Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier," Opt. Express 16, 1546-1551 (2008).
[CrossRef] [PubMed]

Y. Feng, L. R. Taylor, and D. Bonaccini Calia, "25WRaman-fiber-amplifier-based 589 nm laser for a large guide star," Opt. Express 16, 19021-19026 (2009).
[CrossRef]

Opt. Lett. (7)

K. An, B. A. Sones, C. Fang-Yen, R. R. Dasari, andM.S. Feld, "Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level," Opt. Lett. 22, 1433-1435 (1997).
[CrossRef]

J. H. Chow, B. S. Sheard, D. E. McClelland, M. B. Gray, and I. C. M. Littler "Photothermal effects in passive fiber Bragg grating resonators," Opt. Lett. 30, 708-710 (2005).
[CrossRef] [PubMed]

Y. Kitaoka, K. Mizuuchi, K. Yamamoto, M. Kato, and T. Sasaki, "Intracavity second-harmonic generation with a periodically domain-inverted LiTaO3 device" Opt. Lett. 21, 1972-1974 (1996).
[CrossRef] [PubMed]

G. K. Samanta, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, "Stable, 9.6W, continuous-wave, single-frequency, fiber-based green source at 532 nm," Opt. Lett. 34, 1561-1563 (2009).
[CrossRef] [PubMed]

G. D. Miller, R. G. Batchko,W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett. 22, 1834-1836 (1997).
[CrossRef]

G. K. Samanta, S. Chaitanya Kumar, M. Mathew, C. Canalias, V. Pasiskevicius, F. Laurell, and M. Ebrahim-Zadeh, "High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO4," Opt. Lett. 33, 2955-2957 (2008).
[CrossRef] [PubMed]

P. Herskind, J. Lindballe, C. Clausen, J. L. Sørensen, and M. Drewsen, "Second-harmonic generation of light at 544 and 272 nm from an ytterbium-doped distributed-feedback fiber laser," Opt. Lett. 32, 268-270 (2007).
[CrossRef] [PubMed]

Phys. Rev. A (1)

A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland, and H.-A. Bachor, "Classical and quantum signatures of competing |(2) nonlinearities," Phys. Rev. A 55, 4511-4515 (1997).
[CrossRef]

Phys. Rev. D (1)

M. Cerdonio, L. Conti, A. Heidmann and M. Pinard, "Thermoelastic effects at low temperature and quantum limits in displacements measurements," Phys. Rev. D 63, 082003 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

M. De Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, "Experimental measurement of the dynamic photothermal effect in Fabry-Perot cavities for gravitational wave detectors," Phys. Rev. Lett. 89, 237402 (2002).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. L. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, "UV and visible absorption in LiTaO3," Proc. SPIE 3610, 44-51 (1999).
[CrossRef]

Other (2)

J. P. Anderegg, T. A. Chernysheva, D. F. Elkins, C. L. Simmons, R. C. Bishop, C. L. Pedersen, M. L. Murphy, and F. L. Williams, "RGB laser generation from fiber MOPAs coupled to external enhancement cavities," SPIE Photonics West, San Francisco 2010, paper 7578-15 (2010).

A. G. White, "Classical and quantum dynamics of optical frequency conversion," PhD Thesis, Australian National University (1997); http://photonics.anu.edu.au/qoptics/theses.htmlSee also references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic view of experimental setup. OI, optical isolator; L#, coupling lens; SM, steering mirror; M#, cavity mirror; PPSLT, temperature stabilized periodically poled lithium tantalate crystal; A, beam attenuator; QWP, λ/4 waveplate; PBS, polarizing beam splitter; PD#, photodetector; PZT piezo actuator.

Fig. 2.
Fig. 2.

Experimental evidence of photothermal effect when scanning a cavity resonance, with the laser approaching the resonance from (a) lower and (b) higher frequencies, for three different input powers: (i) 0.05 W, (ii) 4.5 W, and (iii) 8.0 W.

Fig. 3.
Fig. 3.

Power profiles observed by scanning the cavity across a resonance: (a) SH profiles for 94%-reflectivity coupling mirror and for three different values of input power, P 1 = 4.4 W, P 2 = 6.3 W, and P 3 = 8.0 W; (b) syncronous profiles for fundamental (F) and second harmonic (SH) above threshold, for 97%-reflectivity coupling mirror and 5.4 W of input power. The scale of fundamental power indicates the intracavity circulating power.

Fig. 4.
Fig. 4.

Second harmonic power P SH as a function of the input fundamental power P in for three different values of input mirror reflectivity: 88%, 94% and 97%. The inset displays, for the configuration with the 88%-reflectivity coupling mirror, the experimental efficiency η vs. P in, along with efficiency predicted by Eqs. (1) and (2), with all the measured parameters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P SH = γ SH P c 2 .
P c = P in T 1 [ 1 R 1 R 2 ( 1 γ SH P c ) ] 2 ,

Metrics