Abstract

In this paper, we analytically investigate the coupling of light from liquid-core waveguides to conventional solid-core waveguides and a series of other optical properties of liquid waveguides in order to gauge the practicality of such a system for use in microfluidically reconfigurable photonic systems. A finite element model of the system was constructed and relevant properties such as mode field diameter, attenuation, bending loss, and efficiency of evanescent and end-fire coupling were investigated as a function of the liquid waveguide Peclet number and the relative difference in refractive index. For pure liquid systems we show that the mode field diameter decreases monotonically with increasing Peclet number and that bending losses could be significantly reduced by increasing the Peclet number. More critically, we observed irreversible evanescent coupling, in which the light coupled in the solid waveguide is entrapped within the solid rather than coupled back into the liquid waveguide. This effect was caused by the lengthwise variation in the propagation constant of the liquid core due to downstream diffusion. We demonstrate that coupling efficiencies as high as 84% can be obtained for fluid based end-fire coupling by taking advantage of the tunable mode field diameter. By developing techniques for coupling light between liquid and solid states we hope to be able to overcome the drawbacks of solid waveguide systems (e.g. unchangeable structure and properties) and liquid waveguide systems (e.g. diversion and attenuation) yielding a new paradigm for reconfigurable photonics.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [CrossRef]
  3. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
    [CrossRef] [PubMed]
  4. X. L. Mao, S. C. S. Lin, M. I. Lapsley, J. J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
    [CrossRef] [PubMed]
  5. X. Q. Cui, L. M. Lee, X. Heng, W. W. Zhong, P. W. Sternberg, D. Psaltis, and C. H. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
    [CrossRef] [PubMed]
  6. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
    [CrossRef]
  7. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [CrossRef] [PubMed]
  8. D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
    [CrossRef] [PubMed]
  9. Z. Y. Li, Z. Y. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
    [CrossRef] [PubMed]
  10. X. C. Li, J. Wu, A. Q. Liu, Z. G. Li, Y. C. Soew, H. J. Huang, K. Xu, and J. T. Lin, “A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip,” Appl. Phys. Lett. 93(19), 193901–193903 (2008).
    [CrossRef]
  11. J. M. Lim, S. H. Kim, J. H. Choi, and S. M. Yang, “Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources,” Lab Chip 8(9), 1580–1585 (2008).
    [CrossRef] [PubMed]
  12. M. Rosenauer and M. J. Vellekoop, “A versatile liquid-core/liquid-twin-cladding waveguide micro flow cell fabricated by rapid prototyping,” Appl. Phys. Lett. 95(16), 163702–163705 (2009).
    [CrossRef]
  13. H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
    [CrossRef]
  14. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [CrossRef]
  15. A. J. Chung, E. Jung, and D. Erickson, “A new form of reconfigurable material using optofludic waveguides”, in Proceedings of Micro- Total Analysis System, (Jeju, Korea, 2009), pp. 198–200.
  16. D. Lide, ed., Handbook of Chemistry of Physics, 79th ed. (CRC Press, 1999).
  17. D. Marcuse, “TE modes of graded-index slab waveguides,” IEEE J. Quantum Electron. 9(10), 1000–1006 (1973).
    [CrossRef]
  18. C. R. Pollock, Fundamentals of Optoelectronics (Richard D. Irwin, INC., 1995).
  19. S. Kawakami, M. Miyagi, and S. Nishida, “Bending losses of dielectric slab optical waveguide with double or multiple claddings: theory,” Appl. Opt. 14(11), 2588–2597 (1975).
    [CrossRef] [PubMed]
  20. K. Thyagarajan, M. R. Shenoy, and A. K. Ghatak, “Accurate numerical method for the calculation of bending loss in optical waveguides using a matrix approach,” Opt. Lett. 12(4), 296–298 (1987).
    [CrossRef] [PubMed]
  21. C. H. Tsai, C. H. Tai, L. M. Fu, and F. B. Wu, “Experimental and numerical analysis of the geometry effects of low-dispersion turns in microfluidic systems,” J. Micromech. Microeng. 15(2), 377–385 (2005).
    [CrossRef]
  22. A. W. Snyder, and J. D. Love, Optical waveguide Theory (Chapman and Hall, 1983).
  23. K. S. Chiang and S. Y. Cheng, “Technique of applying the prism-coupler method for accurate measurement of the effective indices of channel waveguides,” Opt. Eng. 47(3), 034601–034604 (2008).
    [CrossRef]
  24. B. Wang, J. H. Jiang, and G. P. Nordin, “Compact slanted grating couplers,” Opt. Express 12(15), 3313–3326 (2004).
    [CrossRef] [PubMed]
  25. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]

2010

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[CrossRef]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

2009

M. Rosenauer and M. J. Vellekoop, “A versatile liquid-core/liquid-twin-cladding waveguide micro flow cell fabricated by rapid prototyping,” Appl. Phys. Lett. 95(16), 163702–163705 (2009).
[CrossRef]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

X. L. Mao, S. C. S. Lin, M. I. Lapsley, J. J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

2008

X. Q. Cui, L. M. Lee, X. Heng, W. W. Zhong, P. W. Sternberg, D. Psaltis, and C. H. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[CrossRef] [PubMed]

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[CrossRef]

X. C. Li, J. Wu, A. Q. Liu, Z. G. Li, Y. C. Soew, H. J. Huang, K. Xu, and J. T. Lin, “A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip,” Appl. Phys. Lett. 93(19), 193901–193903 (2008).
[CrossRef]

J. M. Lim, S. H. Kim, J. H. Choi, and S. M. Yang, “Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources,” Lab Chip 8(9), 1580–1585 (2008).
[CrossRef] [PubMed]

K. S. Chiang and S. Y. Cheng, “Technique of applying the prism-coupler method for accurate measurement of the effective indices of channel waveguides,” Opt. Eng. 47(3), 034601–034604 (2008).
[CrossRef]

2007

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

2006

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Z. Y. Li, Z. Y. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
[CrossRef] [PubMed]

2005

C. H. Tsai, C. H. Tai, L. M. Fu, and F. B. Wu, “Experimental and numerical analysis of the geometry effects of low-dispersion turns in microfluidic systems,” J. Micromech. Microeng. 15(2), 377–385 (2005).
[CrossRef]

2004

B. Wang, J. H. Jiang, and G. P. Nordin, “Compact slanted grating couplers,” Opt. Express 12(15), 3313–3326 (2004).
[CrossRef] [PubMed]

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

2003

1987

1975

1973

D. Marcuse, “TE modes of graded-index slab waveguides,” IEEE J. Quantum Electron. 9(10), 1000–1006 (1973).
[CrossRef]

Almeida, V. R.

Barrelet, C. J.

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[CrossRef]

Beumer, T. A. M.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Cheng, S. Y.

K. S. Chiang and S. Y. Cheng, “Technique of applying the prism-coupler method for accurate measurement of the effective indices of channel waveguides,” Opt. Eng. 47(3), 034601–034604 (2008).
[CrossRef]

Chiang, K. S.

K. S. Chiang and S. Y. Cheng, “Technique of applying the prism-coupler method for accurate measurement of the effective indices of channel waveguides,” Opt. Eng. 47(3), 034601–034604 (2008).
[CrossRef]

Choi, J. H.

J. M. Lim, S. H. Kim, J. H. Choi, and S. M. Yang, “Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources,” Lab Chip 8(9), 1580–1585 (2008).
[CrossRef] [PubMed]

Conroy, R. S.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Cui, X. Q.

X. Q. Cui, L. M. Lee, X. Heng, W. W. Zhong, P. W. Sternberg, D. Psaltis, and C. H. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[CrossRef] [PubMed]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Erickson, D.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[CrossRef]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Fischbach, M. A.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Fu, L. M.

C. H. Tsai, C. H. Tai, L. M. Fu, and F. B. Wu, “Experimental and numerical analysis of the geometry effects of low-dispersion turns in microfluidic systems,” J. Micromech. Microeng. 15(2), 377–385 (2005).
[CrossRef]

Gaeta, A. L.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Garstecki, P.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Ghatak, A. K.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Greve, J.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Heideman, R. G.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Heng, X.

X. Q. Cui, L. M. Lee, X. Heng, W. W. Zhong, P. W. Sternberg, D. Psaltis, and C. H. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[CrossRef] [PubMed]

Huang, H. J.

X. C. Li, J. Wu, A. Q. Liu, Z. G. Li, Y. C. Soew, H. J. Huang, K. Xu, and J. T. Lin, “A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip,” Appl. Phys. Lett. 93(19), 193901–193903 (2008).
[CrossRef]

Huang, T. J.

X. L. Mao, S. C. S. Lin, M. I. Lapsley, J. J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

Jiang, J. H.

Juluri, B. K.

X. L. Mao, S. C. S. Lin, M. I. Lapsley, J. J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

Kanger, J. S.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Kawakami, S.

Kim, S. H.

J. M. Lim, S. H. Kim, J. H. Choi, and S. M. Yang, “Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources,” Lab Chip 8(9), 1580–1585 (2008).
[CrossRef] [PubMed]

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Lambeck, P. V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Lapsley, M. I.

X. L. Mao, S. C. S. Lin, M. I. Lapsley, J. J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

Lee, L. M.

X. Q. Cui, L. M. Lee, X. Heng, W. W. Zhong, P. W. Sternberg, D. Psaltis, and C. H. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[CrossRef] [PubMed]

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Li, X. C.

X. C. Li, J. Wu, A. Q. Liu, Z. G. Li, Y. C. Soew, H. J. Huang, K. Xu, and J. T. Lin, “A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip,” Appl. Phys. Lett. 93(19), 193901–193903 (2008).
[CrossRef]

Li, Z. G.

X. C. Li, J. Wu, A. Q. Liu, Z. G. Li, Y. C. Soew, H. J. Huang, K. Xu, and J. T. Lin, “A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip,” Appl. Phys. Lett. 93(19), 193901–193903 (2008).
[CrossRef]

Li, Z. Y.

Lieber, C. M.

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[CrossRef]

Lim, J. M.

J. M. Lim, S. H. Kim, J. H. Choi, and S. M. Yang, “Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources,” Lab Chip 8(9), 1580–1585 (2008).
[CrossRef] [PubMed]

Lin, J. T.

X. C. Li, J. Wu, A. Q. Liu, Z. G. Li, Y. C. Soew, H. J. Huang, K. Xu, and J. T. Lin, “A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip,” Appl. Phys. Lett. 93(19), 193901–193903 (2008).
[CrossRef]

Lin, S. C. S.

X. L. Mao, S. C. S. Lin, M. I. Lapsley, J. J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

Lipson, M.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Liu, A. Q.

X. C. Li, J. Wu, A. Q. Liu, Z. G. Li, Y. C. Soew, H. J. Huang, K. Xu, and J. T. Lin, “A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip,” Appl. Phys. Lett. 93(19), 193901–193903 (2008).
[CrossRef]

Mandal, S.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[CrossRef]

Mao, X. L.

X. L. Mao, S. C. S. Lin, M. I. Lapsley, J. J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

Marcuse, D.

D. Marcuse, “TE modes of graded-index slab waveguides,” IEEE J. Quantum Electron. 9(10), 1000–1006 (1973).
[CrossRef]

Mayers, B. T.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Miyagi, M.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Nishida, S.

Nordin, G. P.

Panepucci, R. R.

Park, H. G.

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[CrossRef]

Paul, K. E.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Prentiss, M.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Psaltis, D.

X. Q. Cui, L. M. Lee, X. Heng, W. W. Zhong, P. W. Sternberg, D. Psaltis, and C. H. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Z. Y. Li, Z. Y. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
[CrossRef] [PubMed]

Qian, F.

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Rosenauer, M.

M. Rosenauer and M. J. Vellekoop, “A versatile liquid-core/liquid-twin-cladding waveguide micro flow cell fabricated by rapid prototyping,” Appl. Phys. Lett. 95(16), 163702–163705 (2009).
[CrossRef]

Scherer, A.

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Serey, X.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[CrossRef]

Shenoy, M. R.

Shi, J. J.

X. L. Mao, S. C. S. Lin, M. I. Lapsley, J. J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

Soew, Y. C.

X. C. Li, J. Wu, A. Q. Liu, Z. G. Li, Y. C. Soew, H. J. Huang, K. Xu, and J. T. Lin, “A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip,” Appl. Phys. Lett. 93(19), 193901–193903 (2008).
[CrossRef]

Sternberg, P. W.

X. Q. Cui, L. M. Lee, X. Heng, W. W. Zhong, P. W. Sternberg, D. Psaltis, and C. H. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[CrossRef] [PubMed]

Subramaniam, V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Tai, C. H.

C. H. Tsai, C. H. Tai, L. M. Fu, and F. B. Wu, “Experimental and numerical analysis of the geometry effects of low-dispersion turns in microfluidic systems,” J. Micromech. Microeng. 15(2), 377–385 (2005).
[CrossRef]

Thyagarajan, K.

Tian, B. Z.

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[CrossRef]

Tsai, C. H.

C. H. Tsai, C. H. Tai, L. M. Fu, and F. B. Wu, “Experimental and numerical analysis of the geometry effects of low-dispersion turns in microfluidic systems,” J. Micromech. Microeng. 15(2), 377–385 (2005).
[CrossRef]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

van Hövell, S. W.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Vellekoop, M. J.

M. Rosenauer and M. J. Vellekoop, “A versatile liquid-core/liquid-twin-cladding waveguide micro flow cell fabricated by rapid prototyping,” Appl. Phys. Lett. 95(16), 163702–163705 (2009).
[CrossRef]

Wang, B.

Whitesides, G. M.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Wijn, R. R.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Wink, T.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Wolfe, D. B.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Wu, F. B.

C. H. Tsai, C. H. Tai, L. M. Fu, and F. B. Wu, “Experimental and numerical analysis of the geometry effects of low-dispersion turns in microfluidic systems,” J. Micromech. Microeng. 15(2), 377–385 (2005).
[CrossRef]

Wu, J.

X. C. Li, J. Wu, A. Q. Liu, Z. G. Li, Y. C. Soew, H. J. Huang, K. Xu, and J. T. Lin, “A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip,” Appl. Phys. Lett. 93(19), 193901–193903 (2008).
[CrossRef]

Wu, Y. N.

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[CrossRef]

Xu, K.

X. C. Li, J. Wu, A. Q. Liu, Z. G. Li, Y. C. Soew, H. J. Huang, K. Xu, and J. T. Lin, “A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip,” Appl. Phys. Lett. 93(19), 193901–193903 (2008).
[CrossRef]

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Yang, C. H.

X. Q. Cui, L. M. Lee, X. Heng, W. W. Zhong, P. W. Sternberg, D. Psaltis, and C. H. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yang, S. M.

J. M. Lim, S. H. Kim, J. H. Choi, and S. M. Yang, “Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources,” Lab Chip 8(9), 1580–1585 (2008).
[CrossRef] [PubMed]

Ymeti, A.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Zhang, Z. Y.

Zhong, W. W.

X. Q. Cui, L. M. Lee, X. Heng, W. W. Zhong, P. W. Sternberg, D. Psaltis, and C. H. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

M. Rosenauer and M. J. Vellekoop, “A versatile liquid-core/liquid-twin-cladding waveguide micro flow cell fabricated by rapid prototyping,” Appl. Phys. Lett. 95(16), 163702–163705 (2009).
[CrossRef]

X. C. Li, J. Wu, A. Q. Liu, Z. G. Li, Y. C. Soew, H. J. Huang, K. Xu, and J. T. Lin, “A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip,” Appl. Phys. Lett. 93(19), 193901–193903 (2008).
[CrossRef]

IEEE J. Quantum Electron.

D. Marcuse, “TE modes of graded-index slab waveguides,” IEEE J. Quantum Electron. 9(10), 1000–1006 (1973).
[CrossRef]

J. Micromech. Microeng.

C. H. Tsai, C. H. Tai, L. M. Fu, and F. B. Wu, “Experimental and numerical analysis of the geometry effects of low-dispersion turns in microfluidic systems,” J. Micromech. Microeng. 15(2), 377–385 (2005).
[CrossRef]

Lab Chip

J. M. Lim, S. H. Kim, J. H. Choi, and S. M. Yang, “Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources,” Lab Chip 8(9), 1580–1585 (2008).
[CrossRef] [PubMed]

X. L. Mao, S. C. S. Lin, M. I. Lapsley, J. J. Shi, B. K. Juluri, and T. J. Huang, “Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

Nano Lett.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[CrossRef]

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

H. G. Park, C. J. Barrelet, Y. N. Wu, B. Z. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[CrossRef]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Nature

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Opt. Eng.

K. S. Chiang and S. Y. Cheng, “Technique of applying the prism-coupler method for accurate measurement of the effective indices of channel waveguides,” Opt. Eng. 47(3), 034601–034604 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

X. Q. Cui, L. M. Lee, X. Heng, W. W. Zhong, P. W. Sternberg, D. Psaltis, and C. H. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[CrossRef] [PubMed]

Other

A. J. Chung, E. Jung, and D. Erickson, “A new form of reconfigurable material using optofludic waveguides”, in Proceedings of Micro- Total Analysis System, (Jeju, Korea, 2009), pp. 198–200.

D. Lide, ed., Handbook of Chemistry of Physics, 79th ed. (CRC Press, 1999).

C. R. Pollock, Fundamentals of Optoelectronics (Richard D. Irwin, INC., 1995).

A. W. Snyder, and J. D. Love, Optical waveguide Theory (Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the liquid waveguide. Dotted area was simulated in this paper

Fig. 2
Fig. 2

(a, b) Refractive index and steady state electric field profiles at Pe = 200. (c, d) Refractive index and steady state electric field profiles at Pe = 800. (e, f) Power intensity distribution at a downstream distance of 300µm, Pe = 200 and 800 respectively.

Fig. 3
Fig. 3

(a) Mode field diameter at different Peclet numbers along the liquid waveguide. (b) Attenuation of optical power at different Peclet numbers along the liquid waveguide

Fig. 4
Fig. 4

(a) Refractive index profile in the curved channel with R = 500 µm and S0 = 500 µm at Pe = 600 (b) Bending loss at different Peclet numbers and different radii.

Fig. 5
Fig. 5

(a, b) Concentration and steady state electric field profile at Pe = 500. RI of liquid waveguide at the inlet was1.44 and solid waveguide was 1.37. Solid waveguide is represented as the white and black lines in Fig. 5(a) and 5(b)

Fig. 6
Fig. 6

(a) Coupling length (black) and coupling efficiency (red) as a function of Δn (RI of solid waveguide – RI of liquid waveguide) at Pe = 250. (b) Refractive index profile along liquid waveguide at Pe = 200 (black) and 500 (red). The profiles were obtained along the black dotted line in the liquid waveguide and the X axis represents the downstream distance from the start of the solid waveguide.

Fig. 7
Fig. 7

(a, b) Coupling length and coupling efficiency at different Peclet numbers (200~500) with constant refractive indices (1.37 ~1.40) of the solid waveguide

Fig. 8
Fig. 8

(a, b) Concentration and steady state electric field profiles at Pe = 200. (c, d) Concentration and steady state electric field profiles at Pe = 800, RI of liquid waveguide at the inlet = 1.44 and RI of solid waveguide is the same.

Fig. 9
Fig. 9

(a) Coupling efficiency at different Peclet numbers with constant RI (1.44) of solid waveguide and liquid waveguide. (b) Coupling efficiency at different RIs of solid waveguide.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

v = 0
ρ v v = p + μ 2 v
v c = D 2 c
R e ( v * * v * ) = * p * + * 2 v *
R e = ρ V L / μ
P e ( v * * c ) = * 2 c
P e = V L / D
t 2 E t + ( k 0 2 n i 2 β 2 ) E t = 0

Metrics