Abstract

A new method for direct patterning of Poly(dimethylsiloxane) (PDMS) microstructures is developed by taking advantage of photorefractive effect in a functionalized substrate. Here we show that when a x-cut Iron doped Lithium Niobate (LN) crystal is exposed to appropriate structured laser light, a charge density pattern builds-up in the crystal and a space charge field arise that is able to induce self-patterning of the PDMS liquid film deposited on its surface via the dielectrophoretic effects. Proper heating treatment allows to achieve polymeric linking process creating a solid and stable PDMS microstructures. The self-patterned structures replicate the illuminating light pattern. We show that 1D and 2D patterning of PDMS gratings can be achieved. This new soft-lithographic approach can pave the way for realizing PDMS micro-structures with high degree of flexibility that avoids the need of moulds fabrication.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
    [CrossRef]
  2. K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494 (2004).
    [CrossRef] [PubMed]
  3. Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
    [CrossRef]
  4. T. Sulchek, R. Hsieh, J. D. Adams, S. C. Minne, C. F. Quate, and D. M. Adderton, “High-speed atomic force microscopy in liquid,” Rev. Sci. Instrum. 71(5), 2097–2099 (2000).
    [CrossRef]
  5. S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
    [CrossRef] [PubMed]
  6. K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13(4), 568–575 (2004).
    [CrossRef]
  7. A. Pawlowski, A. Sayah, and M. A. M. Gijs, “Precision poly-(dimethyl siloxane) masking technology for high-resolution powder blasting,” J. Microelectromech. Syst. 14(3), 619–624 (2005).
    [CrossRef]
  8. J. Garra, T. Long, J. Currie, T. Schneider, R. White, and M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20(3), 975 (2002).
    [CrossRef]
  9. W. R. Childs and R. G. Nuzzo, “Decal transfer microlithography: a new soft-lithographic patterning method,” J. Am. Chem. Soc. 124(45), 13583–13596 (2002).
    [CrossRef] [PubMed]
  10. W. R. Childs and R. G. Nuzzo, “Patterning of Thin-Film Microstructures on Non-Planar Substrate Surfaces Using Decal Transfer Lithography,” Adv. Mater. 16(15), 1323–1327 (2004).
    [CrossRef]
  11. W. R. Childs and R. G. Nuzzo, “Large-area patterning of coinage-metal thin films using decal transfer lithography,” Langmuir 21(1), 195–202 (2005).
    [CrossRef]
  12. A. L. Thangawng, M. A. Swartz, M. R. Glucksberg, and R. S. Ruoff, “Bond-detach lithography: a method for micro/nanolithography by precision PDMS patterning,” Small 3(1), 132–138 (2007).
    [CrossRef] [PubMed]
  13. F. Stellacci, “Towards Industrial-Scale Molecular Nanolithography,” Adv. Funct. Mater. 16(1), 15–16 (2006).
    [CrossRef]
  14. Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
    [CrossRef]
  15. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
    [CrossRef]
  16. A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
    [CrossRef] [PubMed]
  17. J. S. Kee, D. P. Poenar, P. Neuzil, and L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17(14), 11739–11746 (2009).
    [CrossRef] [PubMed]
  18. W. C. Chuang, C. K. Chao, and C.-T. Ho, “Fabrication of high-resolution periodical structure on polymer waveguides using a replication process,” Opt. Express 15(14), 8649–8659 (2007).
    [CrossRef] [PubMed]
  19. P. Björk, S. Holmström, and O. Inganäs, “Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer,” Small 2(8-9), 1068–1074 (2006).
    [CrossRef] [PubMed]
  20. S. Grilli, V. Vespini, and P. Ferraro, “Surface-charge lithography for direct PDMS micro-patterning,” Langmuir 24(23), 13262–13265 (2008).
    [CrossRef] [PubMed]
  21. P. Ferraro, S. Grilli, L. Miccio, and V. Vespini, “Wettability patterning of lithium niobate substrate by modulating pyroelectric effect to form microarray of sessile droplets,” Appl. Phys. Lett. 92(21), 213107 (2008).
    [CrossRef]
  22. S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, “In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy,” Meas. Sci. Technol. 19(7), 074008 (2008).
    [CrossRef]
  23. F. Argullo-Lopez, G. F. Calvo, and M. Carrascosa, “Fundamentals of Photorefractive Phenomena” in Photorefractive materials and their applications I, P. Gunter and J. P. Huignard eds. (Springer 2006) pp 43–82.
  24. K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
    [CrossRef]
  25. H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16(4), 2646–2652 (2008).
    [CrossRef] [PubMed]
  26. X. Zhang, J. Wang, B. Tang, X. Tan, R. A. Rupp, L. Pan, Y. Kong, Q. Sun, and J. Xu, “Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17(12), 9981–9988 (2009).
    [CrossRef] [PubMed]
  27. H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
    [CrossRef]
  28. M. Luennemann, U. Hartwig, and K. Buse, “Improvements of sensitivity and refractive-index changes in photorefractive iron-doped lithium niobate crystals by application of extremely large external electric fields,” J. Opt. Soc. Am. B 20(8), 1643–1648 (2003).
    [CrossRef]
  29. P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and G. Coppola, “Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method,” Appl. Phys. Lett. 85(14), 2709–2711 (2004).
    [CrossRef]
  30. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
    [CrossRef]
  31. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008).
    [CrossRef] [PubMed]

2009 (2)

2008 (5)

H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16(4), 2646–2652 (2008).
[CrossRef] [PubMed]

N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008).
[CrossRef] [PubMed]

S. Grilli, V. Vespini, and P. Ferraro, “Surface-charge lithography for direct PDMS micro-patterning,” Langmuir 24(23), 13262–13265 (2008).
[CrossRef] [PubMed]

P. Ferraro, S. Grilli, L. Miccio, and V. Vespini, “Wettability patterning of lithium niobate substrate by modulating pyroelectric effect to form microarray of sessile droplets,” Appl. Phys. Lett. 92(21), 213107 (2008).
[CrossRef]

S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, “In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy,” Meas. Sci. Technol. 19(7), 074008 (2008).
[CrossRef]

2007 (4)

A. L. Thangawng, M. A. Swartz, M. R. Glucksberg, and R. S. Ruoff, “Bond-detach lithography: a method for micro/nanolithography by precision PDMS patterning,” Small 3(1), 132–138 (2007).
[CrossRef] [PubMed]

W. C. Chuang, C. K. Chao, and C.-T. Ho, “Fabrication of high-resolution periodical structure on polymer waveguides using a replication process,” Opt. Express 15(14), 8649–8659 (2007).
[CrossRef] [PubMed]

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

2006 (2)

P. Björk, S. Holmström, and O. Inganäs, “Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer,” Small 2(8-9), 1068–1074 (2006).
[CrossRef] [PubMed]

F. Stellacci, “Towards Industrial-Scale Molecular Nanolithography,” Adv. Funct. Mater. 16(1), 15–16 (2006).
[CrossRef]

2005 (2)

A. Pawlowski, A. Sayah, and M. A. M. Gijs, “Precision poly-(dimethyl siloxane) masking technology for high-resolution powder blasting,” J. Microelectromech. Syst. 14(3), 619–624 (2005).
[CrossRef]

W. R. Childs and R. G. Nuzzo, “Large-area patterning of coinage-metal thin films using decal transfer lithography,” Langmuir 21(1), 195–202 (2005).
[CrossRef]

2004 (7)

W. R. Childs and R. G. Nuzzo, “Patterning of Thin-Film Microstructures on Non-Planar Substrate Surfaces Using Decal Transfer Lithography,” Adv. Mater. 16(15), 1323–1327 (2004).
[CrossRef]

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13(4), 568–575 (2004).
[CrossRef]

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and G. Coppola, “Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method,” Appl. Phys. Lett. 85(14), 2709–2711 (2004).
[CrossRef]

K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494 (2004).
[CrossRef] [PubMed]

2003 (3)

M. Luennemann, U. Hartwig, and K. Buse, “Improvements of sensitivity and refractive-index changes in photorefractive iron-doped lithium niobate crystals by application of extremely large external electric fields,” J. Opt. Soc. Am. B 20(8), 1643–1648 (2003).
[CrossRef]

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef]

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[CrossRef] [PubMed]

2002 (2)

J. Garra, T. Long, J. Currie, T. Schneider, R. White, and M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20(3), 975 (2002).
[CrossRef]

W. R. Childs and R. G. Nuzzo, “Decal transfer microlithography: a new soft-lithographic patterning method,” J. Am. Chem. Soc. 124(45), 13583–13596 (2002).
[CrossRef] [PubMed]

2000 (2)

T. Sulchek, R. Hsieh, J. D. Adams, S. C. Minne, C. F. Quate, and D. M. Adderton, “High-speed atomic force microscopy in liquid,” Rev. Sci. Instrum. 71(5), 2097–2099 (2000).
[CrossRef]

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

1997 (1)

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
[CrossRef]

Adams, J. D.

T. Sulchek, R. Hsieh, J. D. Adams, S. C. Minne, C. F. Quate, and D. M. Adderton, “High-speed atomic force microscopy in liquid,” Rev. Sci. Instrum. 71(5), 2097–2099 (2000).
[CrossRef]

Adderton, D. M.

T. Sulchek, R. Hsieh, J. D. Adams, S. C. Minne, C. F. Quate, and D. M. Adderton, “High-speed atomic force microscopy in liquid,” Rev. Sci. Instrum. 71(5), 2097–2099 (2000).
[CrossRef]

Adleman, J. R.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

Alfieri, D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

Beebe, D. J.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

Belotti, M.

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

Björk, P.

P. Björk, S. Holmström, and O. Inganäs, “Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer,” Small 2(8-9), 1068–1074 (2006).
[CrossRef] [PubMed]

Buse, K.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

M. Luennemann, U. Hartwig, and K. Buse, “Improvements of sensitivity and refractive-index changes in photorefractive iron-doped lithium niobate crystals by application of extremely large external electric fields,” J. Opt. Soc. Am. B 20(8), 1643–1648 (2003).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
[CrossRef]

Büttgenbach, S.

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

Cambril, E.

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

Camou, S.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef]

Chao, C. K.

Chen, Y.

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

Childs, W. R.

W. R. Childs and R. G. Nuzzo, “Large-area patterning of coinage-metal thin films using decal transfer lithography,” Langmuir 21(1), 195–202 (2005).
[CrossRef]

W. R. Childs and R. G. Nuzzo, “Patterning of Thin-Film Microstructures on Non-Planar Substrate Surfaces Using Decal Transfer Lithography,” Adv. Mater. 16(15), 1323–1327 (2004).
[CrossRef]

W. R. Childs and R. G. Nuzzo, “Decal transfer microlithography: a new soft-lithographic patterning method,” J. Am. Chem. Soc. 124(45), 13583–13596 (2002).
[CrossRef] [PubMed]

Chronis, N.

Chuang, W. C.

Clark, R. L.

Cole, D. G.

Coppola, G.

P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and G. Coppola, “Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method,” Appl. Phys. Lett. 85(14), 2709–2711 (2004).
[CrossRef]

Currie, J.

J. Garra, T. Long, J. Currie, T. Schneider, R. White, and M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20(3), 975 (2002).
[CrossRef]

De Nicola, S.

P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and G. Coppola, “Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method,” Appl. Phys. Lett. 85(14), 2709–2711 (2004).
[CrossRef]

De Petrocellis, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

Eggert, H. A.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

Ferraro, P.

S. Grilli, V. Vespini, and P. Ferraro, “Surface-charge lithography for direct PDMS micro-patterning,” Langmuir 24(23), 13262–13265 (2008).
[CrossRef] [PubMed]

P. Ferraro, S. Grilli, L. Miccio, and V. Vespini, “Wettability patterning of lithium niobate substrate by modulating pyroelectric effect to form microarray of sessile droplets,” Appl. Phys. Lett. 92(21), 213107 (2008).
[CrossRef]

S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, “In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy,” Meas. Sci. Technol. 19(7), 074008 (2008).
[CrossRef]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and G. Coppola, “Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method,” Appl. Phys. Lett. 85(14), 2709–2711 (2004).
[CrossRef]

Finizio, A.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and G. Coppola, “Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method,” Appl. Phys. Lett. 85(14), 2709–2711 (2004).
[CrossRef]

Fujii, T.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef]

Fujita, H.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef]

Garra, J.

J. Garra, T. Long, J. Currie, T. Schneider, R. White, and M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20(3), 975 (2002).
[CrossRef]

Gijs, M. A. M.

A. Pawlowski, A. Sayah, and M. A. M. Gijs, “Precision poly-(dimethyl siloxane) masking technology for high-resolution powder blasting,” J. Microelectromech. Syst. 14(3), 619–624 (2005).
[CrossRef]

Glucksberg, M. R.

A. L. Thangawng, M. A. Swartz, M. R. Glucksberg, and R. S. Ruoff, “Bond-detach lithography: a method for micro/nanolithography by precision PDMS patterning,” Small 3(1), 132–138 (2007).
[CrossRef] [PubMed]

Grilli, S.

S. Grilli, V. Vespini, and P. Ferraro, “Surface-charge lithography for direct PDMS micro-patterning,” Langmuir 24(23), 13262–13265 (2008).
[CrossRef] [PubMed]

P. Ferraro, S. Grilli, L. Miccio, and V. Vespini, “Wettability patterning of lithium niobate substrate by modulating pyroelectric effect to form microarray of sessile droplets,” Appl. Phys. Lett. 92(21), 213107 (2008).
[CrossRef]

S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, “In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy,” Meas. Sci. Technol. 19(7), 074008 (2008).
[CrossRef]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

Hartwig, U.

Ho, C.-T.

Holmström, S.

P. Björk, S. Holmström, and O. Inganäs, “Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer,” Small 2(8-9), 1068–1074 (2006).
[CrossRef] [PubMed]

Hsieh, R.

T. Sulchek, R. Hsieh, J. D. Adams, S. C. Minne, C. F. Quate, and D. M. Adderton, “High-speed atomic force microscopy in liquid,” Rev. Sci. Instrum. 71(5), 2097–2099 (2000).
[CrossRef]

Inganäs, O.

P. Björk, S. Holmström, and O. Inganäs, “Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer,” Small 2(8-9), 1068–1074 (2006).
[CrossRef] [PubMed]

Jenness, N. J.

Jeong, K.-H.

Jo, B. H.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

Johannes, M. S.

Kee, J. S.

Kong, Y.

Kou, Q.

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

Kuhnert, F. Y.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

Lee, L. P.

Liu, C.

K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13(4), 568–575 (2004).
[CrossRef]

Liu, G. L.

Llobera, A.

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

Long, T.

J. Garra, T. Long, J. Currie, T. Schneider, R. White, and M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20(3), 975 (2002).
[CrossRef]

Luennemann, M.

Miccio, L.

S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, “In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy,” Meas. Sci. Technol. 19(7), 074008 (2008).
[CrossRef]

P. Ferraro, S. Grilli, L. Miccio, and V. Vespini, “Wettability patterning of lithium niobate substrate by modulating pyroelectric effect to form microarray of sessile droplets,” Appl. Phys. Lett. 92(21), 213107 (2008).
[CrossRef]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

Minne, S. C.

T. Sulchek, R. Hsieh, J. D. Adams, S. C. Minne, C. F. Quate, and D. M. Adderton, “High-speed atomic force microscopy in liquid,” Rev. Sci. Instrum. 71(5), 2097–2099 (2000).
[CrossRef]

Motsegood, K. M.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

Neuzil, P.

Nicola, S. D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

Nuzzo, R. G.

W. R. Childs and R. G. Nuzzo, “Large-area patterning of coinage-metal thin films using decal transfer lithography,” Langmuir 21(1), 195–202 (2005).
[CrossRef]

W. R. Childs and R. G. Nuzzo, “Patterning of Thin-Film Microstructures on Non-Planar Substrate Surfaces Using Decal Transfer Lithography,” Adv. Mater. 16(15), 1323–1327 (2004).
[CrossRef]

W. R. Childs and R. G. Nuzzo, “Decal transfer microlithography: a new soft-lithographic patterning method,” J. Am. Chem. Soc. 124(45), 13583–13596 (2002).
[CrossRef] [PubMed]

Padgett, M. J.

Pan, L.

Paranjape, M.

J. Garra, T. Long, J. Currie, T. Schneider, R. White, and M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20(3), 975 (2002).
[CrossRef]

Paturzo, M.

S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, “In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy,” Meas. Sci. Technol. 19(7), 074008 (2008).
[CrossRef]

Pawlowski, A.

A. Pawlowski, A. Sayah, and M. A. M. Gijs, “Precision poly-(dimethyl siloxane) masking technology for high-resolution powder blasting,” J. Microelectromech. Syst. 14(3), 619–624 (2005).
[CrossRef]

Pierattini, G.

P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and G. Coppola, “Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method,” Appl. Phys. Lett. 85(14), 2709–2711 (2004).
[CrossRef]

Poenar, D. P.

Psaltis, D.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

Quate, C. F.

T. Sulchek, R. Hsieh, J. D. Adams, S. C. Minne, C. F. Quate, and D. M. Adderton, “High-speed atomic force microscopy in liquid,” Rev. Sci. Instrum. 71(5), 2097–2099 (2000).
[CrossRef]

Ren, H.

Ruoff, R. S.

A. L. Thangawng, M. A. Swartz, M. R. Glucksberg, and R. S. Ruoff, “Bond-detach lithography: a method for micro/nanolithography by precision PDMS patterning,” Small 3(1), 132–138 (2007).
[CrossRef] [PubMed]

Rupp, R. A.

Ryu, K. S.

K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13(4), 568–575 (2004).
[CrossRef]

Sayah, A.

A. Pawlowski, A. Sayah, and M. A. M. Gijs, “Precision poly-(dimethyl siloxane) masking technology for high-resolution powder blasting,” J. Microelectromech. Syst. 14(3), 619–624 (2005).
[CrossRef]

Schneider, T.

J. Garra, T. Long, J. Currie, T. Schneider, R. White, and M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20(3), 975 (2002).
[CrossRef]

Shaikh, K.

K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13(4), 568–575 (2004).
[CrossRef]

Sia, S. K.

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[CrossRef] [PubMed]

Stellacci, F.

F. Stellacci, “Towards Industrial-Scale Molecular Nanolithography,” Adv. Funct. Mater. 16(1), 15–16 (2006).
[CrossRef]

Studer, V.

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

Sulchek, T.

T. Sulchek, R. Hsieh, J. D. Adams, S. C. Minne, C. F. Quate, and D. M. Adderton, “High-speed atomic force microscopy in liquid,” Rev. Sci. Instrum. 71(5), 2097–2099 (2000).
[CrossRef]

Sun, Q.

Swartz, M. A.

A. L. Thangawng, M. A. Swartz, M. R. Glucksberg, and R. S. Ruoff, “Bond-detach lithography: a method for micro/nanolithography by precision PDMS patterning,” Small 3(1), 132–138 (2007).
[CrossRef] [PubMed]

Tan, X.

Tang, B.

Thangawng, A. L.

A. L. Thangawng, M. A. Swartz, M. R. Glucksberg, and R. S. Ruoff, “Bond-detach lithography: a method for micro/nanolithography by precision PDMS patterning,” Small 3(1), 132–138 (2007).
[CrossRef] [PubMed]

Van Lerberghe, L. M.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

Vespini, V.

S. Grilli, V. Vespini, and P. Ferraro, “Surface-charge lithography for direct PDMS micro-patterning,” Langmuir 24(23), 13262–13265 (2008).
[CrossRef] [PubMed]

P. Ferraro, S. Grilli, L. Miccio, and V. Vespini, “Wettability patterning of lithium niobate substrate by modulating pyroelectric effect to form microarray of sessile droplets,” Appl. Phys. Lett. 92(21), 213107 (2008).
[CrossRef]

Wang, J.

Wang, X.

K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13(4), 568–575 (2004).
[CrossRef]

White, R.

J. Garra, T. Long, J. Currie, T. Schneider, R. White, and M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20(3), 975 (2002).
[CrossRef]

Whitesides, G. M.

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[CrossRef] [PubMed]

Wilke, R.

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

Wu, S. T.

Wulff, K. D.

Xu, J.

Yesilyurt, I.

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

Yobas, L.

Zhang, X.

Adv. Funct. Mater. (1)

F. Stellacci, “Towards Industrial-Scale Molecular Nanolithography,” Adv. Funct. Mater. 16(1), 15–16 (2006).
[CrossRef]

Adv. Mater. (1)

W. R. Childs and R. G. Nuzzo, “Patterning of Thin-Film Microstructures on Non-Planar Substrate Surfaces Using Decal Transfer Lithography,” Adv. Mater. 16(15), 1323–1327 (2004).
[CrossRef]

Appl. Phys. B (1)

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
[CrossRef]

Appl. Phys. Lett. (4)

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and G. Coppola, “Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method,” Appl. Phys. Lett. 85(14), 2709–2711 (2004).
[CrossRef]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

P. Ferraro, S. Grilli, L. Miccio, and V. Vespini, “Wettability patterning of lithium niobate substrate by modulating pyroelectric effect to form microarray of sessile droplets,” Appl. Phys. Lett. 92(21), 213107 (2008).
[CrossRef]

Electrophoresis (1)

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

W. R. Childs and R. G. Nuzzo, “Decal transfer microlithography: a new soft-lithographic patterning method,” J. Am. Chem. Soc. 124(45), 13583–13596 (2002).
[CrossRef] [PubMed]

J. Microelectromech. Syst. (3)

K. S. Ryu, X. Wang, K. Shaikh, and C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13(4), 568–575 (2004).
[CrossRef]

A. Pawlowski, A. Sayah, and M. A. M. Gijs, “Precision poly-(dimethyl siloxane) masking technology for high-resolution powder blasting,” J. Microelectromech. Syst. 14(3), 619–624 (2005).
[CrossRef]

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. A (1)

J. Garra, T. Long, J. Currie, T. Schneider, R. White, and M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20(3), 975 (2002).
[CrossRef]

Lab Chip (2)

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef]

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

Langmuir (2)

S. Grilli, V. Vespini, and P. Ferraro, “Surface-charge lithography for direct PDMS micro-patterning,” Langmuir 24(23), 13262–13265 (2008).
[CrossRef] [PubMed]

W. R. Childs and R. G. Nuzzo, “Large-area patterning of coinage-metal thin films using decal transfer lithography,” Langmuir 21(1), 195–202 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, “In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy,” Meas. Sci. Technol. 19(7), 074008 (2008).
[CrossRef]

Microelectron. Eng. (2)

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, “On-chip optical components and microfluidic systems,” Microelectron. Eng. 73–74, 876–880 (2004).
[CrossRef]

Opt. Express (6)

Rev. Sci. Instrum. (1)

T. Sulchek, R. Hsieh, J. D. Adams, S. C. Minne, C. F. Quate, and D. M. Adderton, “High-speed atomic force microscopy in liquid,” Rev. Sci. Instrum. 71(5), 2097–2099 (2000).
[CrossRef]

Small (2)

A. L. Thangawng, M. A. Swartz, M. R. Glucksberg, and R. S. Ruoff, “Bond-detach lithography: a method for micro/nanolithography by precision PDMS patterning,” Small 3(1), 132–138 (2007).
[CrossRef] [PubMed]

P. Björk, S. Holmström, and O. Inganäs, “Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer,” Small 2(8-9), 1068–1074 (2006).
[CrossRef] [PubMed]

Other (1)

F. Argullo-Lopez, G. F. Calvo, and M. Carrascosa, “Fundamentals of Photorefractive Phenomena” in Photorefractive materials and their applications I, P. Gunter and J. P. Huignard eds. (Springer 2006) pp 43–82.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic procedure for fabricating PDMS periodic structure; (a) sample preparation, (b) optical setup to induce PDMS reshaping and (c) final patterned PDMS grating; (d) photographic image of the device

Fig. 2
Fig. 2

Optical microscope images of the PDMS grating by means of 2.5 × microscope objective (a), and 5 × microscope objective (b).

Fig. 3
Fig. 3

Two dimensional (a) and three dimensional (c) image of the PDMS grating obtained with the confocal microscope; (b) profile correspondent to a central line of (a).

Fig. 4
Fig. 4

Schematic picture of digital holographic setup for interferometric characterization. PBS: polarizing beam splitter, MO: microscope objective, PH: pin hole, M: mirror, L1 and L2: lenses

Fig. 5
Fig. 5

Wrapped (a) and unwrapped (b) phase map for a single PDMS stripe; (c) pseudo 3D view of reconstructed phase retardation after the grating; (d) profile of the phase retardation introduced by the grating

Fig. 6
Fig. 6

(a) Target used to patter the PDMS channels; (b) photorefractive grating written inside the crystal; (c) Optical microscope image of PDMS channels recorded with 2.5 × magnification; (d) optical image of PDMS channels recorded with 5 × magnification at the edge of the crystal substrate.

Fig. 7
Fig. 7

“HIGH” target microscope image (a) and its corresponding replica in the PDMS layer (b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F = P E
F = 1 2 [ ( ε ε 0 ) E E ] 1 2 E E ( ε ε 0 )

Metrics