Abstract

Typical silicon nanocrystal light emitting devices (LEDs) operate under direct current (DC) biasing conditions that require high electric fields or high current densities. The electroluminescence (EL) under these conditions relies on impact excitation that can be damaging to the material. In this work, we present bipolar injection into silicon nanocrystal LEDs using a pulsed pumping scheme. We measured the frequency dependence of the integrated and time-resolved EL of the LEDs. The frequency dependent behavior of the time-resolved characteristics is used to explain the integrated EL measurements. In addition, the light output of the device was measured under pulsed excitation and was found to increase by a factor of 18 as compared to the case of DC excitation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter 15(26), R1169–R1196 (2003).
    [CrossRef]
  2. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  3. D. J. Lockwood, Z. H. Lu, and J. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices,” Quantum confined luminescence in Si/SiO2 superlattices 76(3), 539–541 (1996).
  4. L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, B. M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, “Nanocrystalline-silicon superlattice produced by controlled recrystallization,” Appl. Phys. Lett. 72(1), 43–45 (1998).
    [CrossRef]
  5. F. Iacona, G. Franzo, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87(3), 1295–1303 (2000).
    [CrossRef]
  6. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80(4), 661–663 (2002).
    [CrossRef]
  7. R. Rolver, O. Winkler, M. Forst, B. Spangenberg, and H. Kurz, “Light emission from Si/SiO2 superlattices fabricated by RPECVD,” Microelectron. Reliab. 45(5-6), 915–918 (2005).
    [CrossRef]
  8. A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
    [CrossRef] [PubMed]
  9. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [CrossRef] [PubMed]
  10. J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83(26), 5479–5481 (2003).
    [CrossRef]
  11. A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
    [CrossRef]
  12. X. D. Pi, O. H. Y. Zalloum, A. P. Knights, P. Mascher, and P. J. Simpson, “Electrical conduction of silicon oxide containing silicon quantum dots,” J. Phys. Condens. Matter 18(43), 9943–9950 (2006).
    [CrossRef]
  13. S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
    [CrossRef]
  14. A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett . 94, 221110 (2009).
    [CrossRef]
  15. R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
    [CrossRef] [PubMed]
  16. R. J. Walters, J. Carreras, T. Feng, L. D. Bell, and H. A. Atwater, “Silicon nanocrystal field-effect light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1647–1656 (2006).
    [CrossRef]
  17. T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline-Si/SiO2 superlattices,” J. Lumin. 130(4), 631–636 (2010).
    [CrossRef]
  18. M. Peralvarez, C. Garcia, M. Lopez, B. Garrido, J. Barreto, C. Dominguez, and J. A. Rodriguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112 (2006).
    [CrossRef]
  19. J. Barreto, M. Peralvarez, J. Antonio Rodriguez, A. Morales, M. Riera, M. Lopez, B. Garrido, L. Lechuga, and C. Dominguez, “Pulsed electroluminescence in silicon nanocrystals-based devices fabricated by PECVD,” Physica E 38(1-2), 193–196 (2007).
    [CrossRef]
  20. R. Walters, “Silicon Nanocrystals for Silicon Photonics,” Thesis, California Inst. of Technology, Pasadena, Calif. (2007).
  21. A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline- Si/ SiO 2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
    [CrossRef]

2010 (1)

T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline-Si/SiO2 superlattices,” J. Lumin. 130(4), 631–636 (2010).
[CrossRef]

2009 (2)

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline- Si/ SiO 2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett . 94, 221110 (2009).
[CrossRef]

2008 (1)

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

2007 (1)

J. Barreto, M. Peralvarez, J. Antonio Rodriguez, A. Morales, M. Riera, M. Lopez, B. Garrido, L. Lechuga, and C. Dominguez, “Pulsed electroluminescence in silicon nanocrystals-based devices fabricated by PECVD,” Physica E 38(1-2), 193–196 (2007).
[CrossRef]

2006 (6)

M. Peralvarez, C. Garcia, M. Lopez, B. Garrido, J. Barreto, C. Dominguez, and J. A. Rodriguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112 (2006).
[CrossRef]

R. J. Walters, J. Carreras, T. Feng, L. D. Bell, and H. A. Atwater, “Silicon nanocrystal field-effect light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1647–1656 (2006).
[CrossRef]

A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
[CrossRef]

X. D. Pi, O. H. Y. Zalloum, A. P. Knights, P. Mascher, and P. J. Simpson, “Electrical conduction of silicon oxide containing silicon quantum dots,” J. Phys. Condens. Matter 18(43), 9943–9950 (2006).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
[CrossRef] [PubMed]

2005 (2)

R. Rolver, O. Winkler, M. Forst, B. Spangenberg, and H. Kurz, “Light emission from Si/SiO2 superlattices fabricated by RPECVD,” Microelectron. Reliab. 45(5-6), 915–918 (2005).
[CrossRef]

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[CrossRef] [PubMed]

2003 (2)

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83(26), 5479–5481 (2003).
[CrossRef]

L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter 15(26), R1169–R1196 (2003).
[CrossRef]

2002 (1)

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80(4), 661–663 (2002).
[CrossRef]

2000 (2)

F. Iacona, G. Franzo, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87(3), 1295–1303 (2000).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

1998 (1)

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, B. M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, “Nanocrystalline-silicon superlattice produced by controlled recrystallization,” Appl. Phys. Lett. 72(1), 43–45 (1998).
[CrossRef]

1996 (1)

D. J. Lockwood, Z. H. Lu, and J. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices,” Quantum confined luminescence in Si/SiO2 superlattices 76(3), 539–541 (1996).

Anopchenko, A.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett . 94, 221110 (2009).
[CrossRef]

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline- Si/ SiO 2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

Antonio Rodriguez, J.

J. Barreto, M. Peralvarez, J. Antonio Rodriguez, A. Morales, M. Riera, M. Lopez, B. Garrido, L. Lechuga, and C. Dominguez, “Pulsed electroluminescence in silicon nanocrystals-based devices fabricated by PECVD,” Physica E 38(1-2), 193–196 (2007).
[CrossRef]

Atwater, H. A.

R. J. Walters, J. Carreras, T. Feng, L. D. Bell, and H. A. Atwater, “Silicon nanocrystal field-effect light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1647–1656 (2006).
[CrossRef]

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[CrossRef] [PubMed]

Baribeau, J.

D. J. Lockwood, Z. H. Lu, and J. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices,” Quantum confined luminescence in Si/SiO2 superlattices 76(3), 539–541 (1996).

Barreto, J.

J. Barreto, M. Peralvarez, J. Antonio Rodriguez, A. Morales, M. Riera, M. Lopez, B. Garrido, L. Lechuga, and C. Dominguez, “Pulsed electroluminescence in silicon nanocrystals-based devices fabricated by PECVD,” Physica E 38(1-2), 193–196 (2007).
[CrossRef]

M. Peralvarez, C. Garcia, M. Lopez, B. Garrido, J. Barreto, C. Dominguez, and J. A. Rodriguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112 (2006).
[CrossRef]

Barsic, D. N.

A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
[CrossRef] [PubMed]

Bell, L. D.

R. J. Walters, J. Carreras, T. Feng, L. D. Bell, and H. A. Atwater, “Silicon nanocrystal field-effect light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1647–1656 (2006).
[CrossRef]

Bellutti, P.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett . 94, 221110 (2009).
[CrossRef]

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline- Si/ SiO 2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

Blasing, J.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80(4), 661–663 (2002).
[CrossRef]

Bongiorno, C.

A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
[CrossRef]

Bourianoff, G. I.

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[CrossRef] [PubMed]

Brongersma, M. L.

A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
[CrossRef] [PubMed]

Canino, A.

A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
[CrossRef]

Carreras, J.

R. J. Walters, J. Carreras, T. Feng, L. D. Bell, and H. A. Atwater, “Silicon nanocrystal field-effect light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1647–1656 (2006).
[CrossRef]

Cazzanelli, M.

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83(26), 5479–5481 (2003).
[CrossRef]

Creazzo, T.

T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline-Si/SiO2 superlattices,” J. Lumin. 130(4), 631–636 (2010).
[CrossRef]

Crupi, I.

A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
[CrossRef]

Dal Negro, L.

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83(26), 5479–5481 (2003).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Di Stefano, G.

A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
[CrossRef]

Dominguez, C.

J. Barreto, M. Peralvarez, J. Antonio Rodriguez, A. Morales, M. Riera, M. Lopez, B. Garrido, L. Lechuga, and C. Dominguez, “Pulsed electroluminescence in silicon nanocrystals-based devices fabricated by PECVD,” Physica E 38(1-2), 193–196 (2007).
[CrossRef]

M. Peralvarez, C. Garcia, M. Lopez, B. Garrido, J. Barreto, C. Dominguez, and J. A. Rodriguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112 (2006).
[CrossRef]

Duttagupta, S. P.

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, B. M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, “Nanocrystalline-silicon superlattice produced by controlled recrystallization,” Appl. Phys. Lett. 72(1), 43–45 (1998).
[CrossRef]

Fallica, P. G.

A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
[CrossRef]

Fathpour, S.

Fauchet, P. M.

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83(26), 5479–5481 (2003).
[CrossRef]

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, B. M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, “Nanocrystalline-silicon superlattice produced by controlled recrystallization,” Appl. Phys. Lett. 72(1), 43–45 (1998).
[CrossRef]

Feng, T.

R. J. Walters, J. Carreras, T. Feng, L. D. Bell, and H. A. Atwater, “Silicon nanocrystal field-effect light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1647–1656 (2006).
[CrossRef]

Forst, M.

R. Rolver, O. Winkler, M. Forst, B. Spangenberg, and H. Kurz, “Light emission from Si/SiO2 superlattices fabricated by RPECVD,” Microelectron. Reliab. 45(5-6), 915–918 (2005).
[CrossRef]

Franzo, G.

A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
[CrossRef]

F. Iacona, G. Franzo, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87(3), 1295–1303 (2000).
[CrossRef]

Franz├▓, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Gaburro, Z.

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

Garcia, C.

M. Peralvarez, C. Garcia, M. Lopez, B. Garrido, J. Barreto, C. Dominguez, and J. A. Rodriguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112 (2006).
[CrossRef]

Garrido, B.

J. Barreto, M. Peralvarez, J. Antonio Rodriguez, A. Morales, M. Riera, M. Lopez, B. Garrido, L. Lechuga, and C. Dominguez, “Pulsed electroluminescence in silicon nanocrystals-based devices fabricated by PECVD,” Physica E 38(1-2), 193–196 (2007).
[CrossRef]

M. Peralvarez, C. Garcia, M. Lopez, B. Garrido, J. Barreto, C. Dominguez, and J. A. Rodriguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112 (2006).
[CrossRef]

Guichard, A. R.

A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
[CrossRef] [PubMed]

Heitmann, J.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80(4), 661–663 (2002).
[CrossRef]

Hirschman, K. D.

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, B. M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, “Nanocrystalline-silicon superlattice produced by controlled recrystallization,” Appl. Phys. Lett. 72(1), 43–45 (1998).
[CrossRef]

Iacona, F.

A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
[CrossRef]

F. Iacona, G. Franzo, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87(3), 1295–1303 (2000).
[CrossRef]

Irrera, A.

A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
[CrossRef]

Jalali, B.

Kahler, U.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80(4), 661–663 (2002).
[CrossRef]

Kamins, T. I.

A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
[CrossRef] [PubMed]

Knights, A. P.

X. D. Pi, O. H. Y. Zalloum, A. P. Knights, P. Mascher, and P. J. Simpson, “Electrical conduction of silicon oxide containing silicon quantum dots,” J. Phys. Condens. Matter 18(43), 9943–9950 (2006).
[CrossRef]

Kurz, H.

R. Rolver, O. Winkler, M. Forst, B. Spangenberg, and H. Kurz, “Light emission from Si/SiO2 superlattices fabricated by RPECVD,” Microelectron. Reliab. 45(5-6), 915–918 (2005).
[CrossRef]

Lechuga, L.

J. Barreto, M. Peralvarez, J. Antonio Rodriguez, A. Morales, M. Riera, M. Lopez, B. Garrido, L. Lechuga, and C. Dominguez, “Pulsed electroluminescence in silicon nanocrystals-based devices fabricated by PECVD,” Physica E 38(1-2), 193–196 (2007).
[CrossRef]

Lockwood, D. J.

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, B. M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, “Nanocrystalline-silicon superlattice produced by controlled recrystallization,” Appl. Phys. Lett. 72(1), 43–45 (1998).
[CrossRef]

D. J. Lockwood, Z. H. Lu, and J. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices,” Quantum confined luminescence in Si/SiO2 superlattices 76(3), 539–541 (1996).

Lopez, M.

J. Barreto, M. Peralvarez, J. Antonio Rodriguez, A. Morales, M. Riera, M. Lopez, B. Garrido, L. Lechuga, and C. Dominguez, “Pulsed electroluminescence in silicon nanocrystals-based devices fabricated by PECVD,” Physica E 38(1-2), 193–196 (2007).
[CrossRef]

M. Peralvarez, C. Garcia, M. Lopez, B. Garrido, J. Barreto, C. Dominguez, and J. A. Rodriguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112 (2006).
[CrossRef]

Lu, Z. H.

D. J. Lockwood, Z. H. Lu, and J. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices,” Quantum confined luminescence in Si/SiO2 superlattices 76(3), 539–541 (1996).

Marchena, E.

T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline-Si/SiO2 superlattices,” J. Lumin. 130(4), 631–636 (2010).
[CrossRef]

Marconi, A.

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline- Si/ SiO 2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett . 94, 221110 (2009).
[CrossRef]

Mascher, P.

X. D. Pi, O. H. Y. Zalloum, A. P. Knights, P. Mascher, and P. J. Simpson, “Electrical conduction of silicon oxide containing silicon quantum dots,” J. Phys. Condens. Matter 18(43), 9943–9950 (2006).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

McCaffrey, J. P.

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, B. M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, “Nanocrystalline-silicon superlattice produced by controlled recrystallization,” Appl. Phys. Lett. 72(1), 43–45 (1998).
[CrossRef]

Morales, A.

J. Barreto, M. Peralvarez, J. Antonio Rodriguez, A. Morales, M. Riera, M. Lopez, B. Garrido, L. Lechuga, and C. Dominguez, “Pulsed electroluminescence in silicon nanocrystals-based devices fabricated by PECVD,” Physica E 38(1-2), 193–196 (2007).
[CrossRef]

Moser, E.

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline- Si/ SiO 2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

Murakowski, J.

T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline-Si/SiO2 superlattices,” J. Lumin. 130(4), 631–636 (2010).
[CrossRef]

Pavesi, L.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett . 94, 221110 (2009).
[CrossRef]

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline- Si/ SiO 2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83(26), 5479–5481 (2003).
[CrossRef]

L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter 15(26), R1169–R1196 (2003).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Peralvarez, M.

J. Barreto, M. Peralvarez, J. Antonio Rodriguez, A. Morales, M. Riera, M. Lopez, B. Garrido, L. Lechuga, and C. Dominguez, “Pulsed electroluminescence in silicon nanocrystals-based devices fabricated by PECVD,” Physica E 38(1-2), 193–196 (2007).
[CrossRef]

M. Peralvarez, C. Garcia, M. Lopez, B. Garrido, J. Barreto, C. Dominguez, and J. A. Rodriguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112 (2006).
[CrossRef]

Pi, X. D.

X. D. Pi, O. H. Y. Zalloum, A. P. Knights, P. Mascher, and P. J. Simpson, “Electrical conduction of silicon oxide containing silicon quantum dots,” J. Phys. Condens. Matter 18(43), 9943–9950 (2006).
[CrossRef]

Piana, A.

A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
[CrossRef]

Prather, D. W.

T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline-Si/SiO2 superlattices,” J. Lumin. 130(4), 631–636 (2010).
[CrossRef]

Presti, C. D.

A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
[CrossRef]

Prezioso, S.

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline- Si/ SiO 2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

Priolo, F.

A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Pucker, G.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett . 94, 221110 (2009).
[CrossRef]

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline- Si/ SiO 2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

Redding, B.

T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline-Si/SiO2 superlattices,” J. Lumin. 130(4), 631–636 (2010).
[CrossRef]

Riera, M.

J. Barreto, M. Peralvarez, J. Antonio Rodriguez, A. Morales, M. Riera, M. Lopez, B. Garrido, L. Lechuga, and C. Dominguez, “Pulsed electroluminescence in silicon nanocrystals-based devices fabricated by PECVD,” Physica E 38(1-2), 193–196 (2007).
[CrossRef]

Rodriguez, J. A.

M. Peralvarez, C. Garcia, M. Lopez, B. Garrido, J. Barreto, C. Dominguez, and J. A. Rodriguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112 (2006).
[CrossRef]

Rolver, R.

R. Rolver, O. Winkler, M. Forst, B. Spangenberg, and H. Kurz, “Light emission from Si/SiO2 superlattices fabricated by RPECVD,” Microelectron. Reliab. 45(5-6), 915–918 (2005).
[CrossRef]

Ruan, J.

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83(26), 5479–5481 (2003).
[CrossRef]

Sanfilippo, D.

A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
[CrossRef]

Schmidt, M.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80(4), 661–663 (2002).
[CrossRef]

Scholz, R.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80(4), 661–663 (2002).
[CrossRef]

Sharma, S.

A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
[CrossRef] [PubMed]

Simpson, P. J.

X. D. Pi, O. H. Y. Zalloum, A. P. Knights, P. Mascher, and P. J. Simpson, “Electrical conduction of silicon oxide containing silicon quantum dots,” J. Phys. Condens. Matter 18(43), 9943–9950 (2006).
[CrossRef]

Spangenberg, B.

R. Rolver, O. Winkler, M. Forst, B. Spangenberg, and H. Kurz, “Light emission from Si/SiO2 superlattices fabricated by RPECVD,” Microelectron. Reliab. 45(5-6), 915–918 (2005).
[CrossRef]

Spinella, C.

F. Iacona, G. Franzo, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87(3), 1295–1303 (2000).
[CrossRef]

Tsybeskov, L.

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, B. M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, “Nanocrystalline-silicon superlattice produced by controlled recrystallization,” Appl. Phys. Lett. 72(1), 43–45 (1998).
[CrossRef]

Vanzetti, L.

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

Walters, R. J.

R. J. Walters, J. Carreras, T. Feng, L. D. Bell, and H. A. Atwater, “Silicon nanocrystal field-effect light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1647–1656 (2006).
[CrossRef]

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[CrossRef] [PubMed]

Wang, M.

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline- Si/ SiO 2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett . 94, 221110 (2009).
[CrossRef]

Winkler, O.

R. Rolver, O. Winkler, M. Forst, B. Spangenberg, and H. Kurz, “Light emission from Si/SiO2 superlattices fabricated by RPECVD,” Microelectron. Reliab. 45(5-6), 915–918 (2005).
[CrossRef]

Zacharias, B. M.

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, B. M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, “Nanocrystalline-silicon superlattice produced by controlled recrystallization,” Appl. Phys. Lett. 72(1), 43–45 (1998).
[CrossRef]

Zacharias, M.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80(4), 661–663 (2002).
[CrossRef]

Zalloum, O. H. Y.

X. D. Pi, O. H. Y. Zalloum, A. P. Knights, P. Mascher, and P. J. Simpson, “Electrical conduction of silicon oxide containing silicon quantum dots,” J. Phys. Condens. Matter 18(43), 9943–9950 (2006).
[CrossRef]

Appl. Phys. Lett (1)

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett . 94, 221110 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83(26), 5479–5481 (2003).
[CrossRef]

L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, B. M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, “Nanocrystalline-silicon superlattice produced by controlled recrystallization,” Appl. Phys. Lett. 72(1), 43–45 (1998).
[CrossRef]

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80(4), 661–663 (2002).
[CrossRef]

M. Peralvarez, C. Garcia, M. Lopez, B. Garrido, J. Barreto, C. Dominguez, and J. A. Rodriguez, “Field effect luminescence from Si nanocrystals obtained by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 89(5), 051112 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. J. Walters, J. Carreras, T. Feng, L. D. Bell, and H. A. Atwater, “Silicon nanocrystal field-effect light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1647–1656 (2006).
[CrossRef]

J. Appl. Phys. (3)

F. Iacona, G. Franzo, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87(3), 1295–1303 (2000).
[CrossRef]

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline- Si/ SiO 2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Lumin. (1)

T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline-Si/SiO2 superlattices,” J. Lumin. 130(4), 631–636 (2010).
[CrossRef]

J. Phys. Condens. Matter (2)

L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter 15(26), R1169–R1196 (2003).
[CrossRef]

X. D. Pi, O. H. Y. Zalloum, A. P. Knights, P. Mascher, and P. J. Simpson, “Electrical conduction of silicon oxide containing silicon quantum dots,” J. Phys. Condens. Matter 18(43), 9943–9950 (2006).
[CrossRef]

Microelectron. Reliab. (1)

R. Rolver, O. Winkler, M. Forst, B. Spangenberg, and H. Kurz, “Light emission from Si/SiO2 superlattices fabricated by RPECVD,” Microelectron. Reliab. 45(5-6), 915–918 (2005).
[CrossRef]

Nano Lett. (1)

A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett. 6(9), 2140–2144 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franzo, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, “Electroluminescence and transport properties in amorphous silicon nanostructures,” Nanotechnology 17(5), 1428–1436 (2006).
[CrossRef]

Nat. Mater. (1)

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[CrossRef] [PubMed]

Nature (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Physica E (1)

J. Barreto, M. Peralvarez, J. Antonio Rodriguez, A. Morales, M. Riera, M. Lopez, B. Garrido, L. Lechuga, and C. Dominguez, “Pulsed electroluminescence in silicon nanocrystals-based devices fabricated by PECVD,” Physica E 38(1-2), 193–196 (2007).
[CrossRef]

Quantum confined luminescence in Si/SiO2 superlattices (1)

D. J. Lockwood, Z. H. Lu, and J. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices,” Quantum confined luminescence in Si/SiO2 superlattices 76(3), 539–541 (1996).

Other (1)

R. Walters, “Silicon Nanocrystals for Silicon Photonics,” Thesis, California Inst. of Technology, Pasadena, Calif. (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Electroluminescence from pulsed excitation is similar to photoluminescence of the silicon nanocrystal devices.

Fig. 2
Fig. 2

A time-resolved plot of the alternating driving voltage (red) and resulting electroluminescence (black) of the silicon nanocrystal LEDs.

Fig. 3
Fig. 3

The applied voltage (above) and corresponding EL signal (below). The EL signal diminished as the negative portion of the bias was reduced. The behavior was the same when the positive portion of the bias was reduced (not shown).

Fig. 4
Fig. 4

Frequency dependence of pulsed EL output for silicon nanocrystal devices.

Fig. 5
Fig. 5

Frequency dependence of the time-resolved EL signal (a) and decay time of the EL pulse (b). The peak and decay time of the signal both decrease with frequency.

Fig. 6
Fig. 6

The output power as a function of voltage for a pulsed driven device and a DC driven device begin to converge at high voltages (a). In the pulsed case, the voltages correspond to the rms voltage of the square wave. Under pulsed driven excitation, the device emits more than 18 times the amount of light as under DC excitation (b).

Metrics