Abstract

We prepared a back-contact dye-sensitized solar cell and investigated effect of the sputter deposited thin TiO2 film on the back-contact ITO electrode on photovoltaic property. The nanocrystalline TiO2 layer with thickness of about 11 μm formed on a plain glass substrate in the back-contact structure showed higher optical transmittance than that formed on an ITO-coated glass substrate, which led to an improved photocurrent density by about 6.3%. However, photovoltage was found to decrease from 817 mV to 773 mV. The photovoltage recovered after deposition of a 35 nm-thick thin TiO2 film on the surface of the back-contact ITO electrode. Little difference in time constant for electron transport was found for the back-contact ITO electrodes with and without the sputter deposited thin TiO2 film. Whereas, time constant for charge recombination increased after introduction of the thin TiO2 film, indicating that such a thin TiO2 film protected back electron transfer, associated with the recovery of photovoltage. As the result of the improved photocurrent density without deterioration of photovoltage, the back-contact dye-sensitized solar cell exhibited 13.6% higher efficiency than the ITO-coated glass substrate-based dye-sensitized solar cell.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. O’Regan and M. Grätzel, “A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
    [CrossRef]
  2. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 164(1–3), 3–14 (2004).
    [CrossRef]
  3. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
    [CrossRef] [PubMed]
  4. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
    [CrossRef]
  5. N.-G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Status Solidi 205(8), 1895–1904 (2008) (a).
    [CrossRef]
  6. R. M. Swanson, Proc. 17th IEEE Photovoltaics Specialists Conf., 1984, p1294.
  7. J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
    [CrossRef]
  8. N. Fuke, A. Fukui, Y. Chiba, R. Komiya, R. Yamanaka, and L. Han, “Back contact dye-sensitized solar cells,” Jpn. J. Appl. Phys. 46(18), L420–L422 (2007).
    [CrossRef]
  9. Y. Kashiwa, Y. Yoshida, and S. Hayase, “All-metal-electrode-dye sensitized solar cells (transparent conductive oxide-less dye sensitized solar cell) consisting of thick and porous Ti electrode with straight pores,” Appl. Phys. Lett. 92(3), 033308 (2008).
    [CrossRef]
  10. N. Fuke, A. Fukui, R. Komiya, A. Islam, Y. Chiba, M. Yanagida, R. Yamanaka, and L. Han, “New approach to low-cost dye sensitized solar cells with back contact electrodes,” Chem. Mater. 20(15), 4974–4979 (2008).
    [CrossRef]
  11. N. Fuke, A. Fukui, A. Islam, R. Komiya, R. Yamanaka, L. Han, and H. Harima, “Electron transfer in back contact dye-sensitized solar cell,” J. Appl. Phys. 104(6), 064307 (2008).
    [CrossRef]
  12. B. Yoo, K. Kim, S. H. Lee, W. M. Kim, and N.-G. Park, “ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 92(8), 873–877 (2008).
    [CrossRef]
  13. B. Yoo, K.-J. Kim, S.-Y. Bang, M. J. Ko, K. Kim, and N.-G. Park, “Chemically deposited blocking layers on FTO substrates: Effect of precursor concentration on photovoltaic performance of dye-sensitized solar cells,” J. Electroanal. Chem. 638(1), 161–166 (2010).
    [CrossRef]
  14. H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, “Size-dependant scattering efficiency in dye-sensitized solar cell,” Inorg. Chim. Acta 361(3), 677–683 (2008).
    [CrossRef]
  15. B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N.-G. Park, “Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells,” J. Mater. Chem. 20(21), 4392–4398 (2010).
    [CrossRef]
  16. S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grätzel, “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency,” Prog. Photovolt. Res. Appl. 14(7), 589–601 (2006).
    [CrossRef]
  17. J. Park, H.-J. Koo, B. Yoo, K. Yoo, K. Kim, W. Choi, and N.-G. Park, “On the I-V measurement of dye-sensitized solar cell: Effect of cell geometry on photovoltaic parameters,” Sol. Energy Mater. Sol. Cells 91(18), 1749–1754 (2007).
    [CrossRef]
  18. N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B 107(41), 11307–11315 (2003).
    [CrossRef]
  19. K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the prercolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
    [CrossRef]

2010 (2)

B. Yoo, K.-J. Kim, S.-Y. Bang, M. J. Ko, K. Kim, and N.-G. Park, “Chemically deposited blocking layers on FTO substrates: Effect of precursor concentration on photovoltaic performance of dye-sensitized solar cells,” J. Electroanal. Chem. 638(1), 161–166 (2010).
[CrossRef]

B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N.-G. Park, “Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells,” J. Mater. Chem. 20(21), 4392–4398 (2010).
[CrossRef]

2008 (6)

H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, “Size-dependant scattering efficiency in dye-sensitized solar cell,” Inorg. Chim. Acta 361(3), 677–683 (2008).
[CrossRef]

N.-G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Status Solidi 205(8), 1895–1904 (2008) (a).
[CrossRef]

Y. Kashiwa, Y. Yoshida, and S. Hayase, “All-metal-electrode-dye sensitized solar cells (transparent conductive oxide-less dye sensitized solar cell) consisting of thick and porous Ti electrode with straight pores,” Appl. Phys. Lett. 92(3), 033308 (2008).
[CrossRef]

N. Fuke, A. Fukui, R. Komiya, A. Islam, Y. Chiba, M. Yanagida, R. Yamanaka, and L. Han, “New approach to low-cost dye sensitized solar cells with back contact electrodes,” Chem. Mater. 20(15), 4974–4979 (2008).
[CrossRef]

N. Fuke, A. Fukui, A. Islam, R. Komiya, R. Yamanaka, L. Han, and H. Harima, “Electron transfer in back contact dye-sensitized solar cell,” J. Appl. Phys. 104(6), 064307 (2008).
[CrossRef]

B. Yoo, K. Kim, S. H. Lee, W. M. Kim, and N.-G. Park, “ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 92(8), 873–877 (2008).
[CrossRef]

2007 (3)

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

N. Fuke, A. Fukui, Y. Chiba, R. Komiya, R. Yamanaka, and L. Han, “Back contact dye-sensitized solar cells,” Jpn. J. Appl. Phys. 46(18), L420–L422 (2007).
[CrossRef]

J. Park, H.-J. Koo, B. Yoo, K. Yoo, K. Kim, W. Choi, and N.-G. Park, “On the I-V measurement of dye-sensitized solar cell: Effect of cell geometry on photovoltaic parameters,” Sol. Energy Mater. Sol. Cells 91(18), 1749–1754 (2007).
[CrossRef]

2006 (2)

S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grätzel, “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency,” Prog. Photovolt. Res. Appl. 14(7), 589–601 (2006).
[CrossRef]

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

2005 (1)

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

2004 (1)

M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 164(1–3), 3–14 (2004).
[CrossRef]

2003 (2)

N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B 107(41), 11307–11315 (2003).
[CrossRef]

K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the prercolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[CrossRef]

1991 (1)

B. O’Regan and M. Grätzel, “A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Bakker, N. J.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Bang, S.-Y.

B. Yoo, K.-J. Kim, S.-Y. Bang, M. J. Ko, K. Kim, and N.-G. Park, “Chemically deposited blocking layers on FTO substrates: Effect of precursor concentration on photovoltaic performance of dye-sensitized solar cells,” J. Electroanal. Chem. 638(1), 161–166 (2010).
[CrossRef]

Benkstein, K. D.

N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B 107(41), 11307–11315 (2003).
[CrossRef]

K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the prercolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[CrossRef]

Charvet, R.

S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grätzel, “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency,” Prog. Photovolt. Res. Appl. 14(7), 589–601 (2006).
[CrossRef]

Chiba, Y.

N. Fuke, A. Fukui, R. Komiya, A. Islam, Y. Chiba, M. Yanagida, R. Yamanaka, and L. Han, “New approach to low-cost dye sensitized solar cells with back contact electrodes,” Chem. Mater. 20(15), 4974–4979 (2008).
[CrossRef]

N. Fuke, A. Fukui, Y. Chiba, R. Komiya, R. Yamanaka, and L. Han, “Back contact dye-sensitized solar cells,” Jpn. J. Appl. Phys. 46(18), L420–L422 (2007).
[CrossRef]

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

Choi, W.

J. Park, H.-J. Koo, B. Yoo, K. Yoo, K. Kim, W. Choi, and N.-G. Park, “On the I-V measurement of dye-sensitized solar cell: Effect of cell geometry on photovoltaic parameters,” Sol. Energy Mater. Sol. Cells 91(18), 1749–1754 (2007).
[CrossRef]

Comte, P.

S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grätzel, “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency,” Prog. Photovolt. Res. Appl. 14(7), 589–601 (2006).
[CrossRef]

De Angelis, F.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Durrant, J. R.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Fantacci, S.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Frank, A. J.

N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B 107(41), 11307–11315 (2003).
[CrossRef]

K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the prercolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[CrossRef]

Fuke, N.

N. Fuke, A. Fukui, R. Komiya, A. Islam, Y. Chiba, M. Yanagida, R. Yamanaka, and L. Han, “New approach to low-cost dye sensitized solar cells with back contact electrodes,” Chem. Mater. 20(15), 4974–4979 (2008).
[CrossRef]

N. Fuke, A. Fukui, A. Islam, R. Komiya, R. Yamanaka, L. Han, and H. Harima, “Electron transfer in back contact dye-sensitized solar cell,” J. Appl. Phys. 104(6), 064307 (2008).
[CrossRef]

N. Fuke, A. Fukui, Y. Chiba, R. Komiya, R. Yamanaka, and L. Han, “Back contact dye-sensitized solar cells,” Jpn. J. Appl. Phys. 46(18), L420–L422 (2007).
[CrossRef]

Fukui, A.

N. Fuke, A. Fukui, R. Komiya, A. Islam, Y. Chiba, M. Yanagida, R. Yamanaka, and L. Han, “New approach to low-cost dye sensitized solar cells with back contact electrodes,” Chem. Mater. 20(15), 4974–4979 (2008).
[CrossRef]

N. Fuke, A. Fukui, A. Islam, R. Komiya, R. Yamanaka, L. Han, and H. Harima, “Electron transfer in back contact dye-sensitized solar cell,” J. Appl. Phys. 104(6), 064307 (2008).
[CrossRef]

N. Fuke, A. Fukui, Y. Chiba, R. Komiya, R. Yamanaka, and L. Han, “Back contact dye-sensitized solar cells,” Jpn. J. Appl. Phys. 46(18), L420–L422 (2007).
[CrossRef]

Grätzel, M.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grätzel, “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency,” Prog. Photovolt. Res. Appl. 14(7), 589–601 (2006).
[CrossRef]

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 164(1–3), 3–14 (2004).
[CrossRef]

B. O’Regan and M. Grätzel, “A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Gruszecki, T.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Han, L.

N. Fuke, A. Fukui, A. Islam, R. Komiya, R. Yamanaka, L. Han, and H. Harima, “Electron transfer in back contact dye-sensitized solar cell,” J. Appl. Phys. 104(6), 064307 (2008).
[CrossRef]

N. Fuke, A. Fukui, R. Komiya, A. Islam, Y. Chiba, M. Yanagida, R. Yamanaka, and L. Han, “New approach to low-cost dye sensitized solar cells with back contact electrodes,” Chem. Mater. 20(15), 4974–4979 (2008).
[CrossRef]

N. Fuke, A. Fukui, Y. Chiba, R. Komiya, R. Yamanaka, and L. Han, “Back contact dye-sensitized solar cells,” Jpn. J. Appl. Phys. 46(18), L420–L422 (2007).
[CrossRef]

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

Harima, H.

N. Fuke, A. Fukui, A. Islam, R. Komiya, R. Yamanaka, L. Han, and H. Harima, “Electron transfer in back contact dye-sensitized solar cell,” J. Appl. Phys. 104(6), 064307 (2008).
[CrossRef]

Hayase, S.

Y. Kashiwa, Y. Yoshida, and S. Hayase, “All-metal-electrode-dye sensitized solar cells (transparent conductive oxide-less dye sensitized solar cell) consisting of thick and porous Ti electrode with straight pores,” Appl. Phys. Lett. 92(3), 033308 (2008).
[CrossRef]

Hinsch, A.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Hore, S.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Islam, A.

N. Fuke, A. Fukui, R. Komiya, A. Islam, Y. Chiba, M. Yanagida, R. Yamanaka, and L. Han, “New approach to low-cost dye sensitized solar cells with back contact electrodes,” Chem. Mater. 20(15), 4974–4979 (2008).
[CrossRef]

N. Fuke, A. Fukui, A. Islam, R. Komiya, R. Yamanaka, L. Han, and H. Harima, “Electron transfer in back contact dye-sensitized solar cell,” J. Appl. Phys. 104(6), 064307 (2008).
[CrossRef]

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

Ito, S.

S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grätzel, “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency,” Prog. Photovolt. Res. Appl. 14(7), 589–601 (2006).
[CrossRef]

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Jirousek, M.

S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grätzel, “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency,” Prog. Photovolt. Res. Appl. 14(7), 589–601 (2006).
[CrossRef]

Kashiwa, Y.

Y. Kashiwa, Y. Yoshida, and S. Hayase, “All-metal-electrode-dye sensitized solar cells (transparent conductive oxide-less dye sensitized solar cell) consisting of thick and porous Ti electrode with straight pores,” Appl. Phys. Lett. 92(3), 033308 (2008).
[CrossRef]

Kay, A.

S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grätzel, “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency,” Prog. Photovolt. Res. Appl. 14(7), 589–601 (2006).
[CrossRef]

Kim, K.

B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N.-G. Park, “Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells,” J. Mater. Chem. 20(21), 4392–4398 (2010).
[CrossRef]

B. Yoo, K.-J. Kim, S.-Y. Bang, M. J. Ko, K. Kim, and N.-G. Park, “Chemically deposited blocking layers on FTO substrates: Effect of precursor concentration on photovoltaic performance of dye-sensitized solar cells,” J. Electroanal. Chem. 638(1), 161–166 (2010).
[CrossRef]

H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, “Size-dependant scattering efficiency in dye-sensitized solar cell,” Inorg. Chim. Acta 361(3), 677–683 (2008).
[CrossRef]

B. Yoo, K. Kim, S. H. Lee, W. M. Kim, and N.-G. Park, “ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 92(8), 873–877 (2008).
[CrossRef]

N.-G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Status Solidi 205(8), 1895–1904 (2008) (a).
[CrossRef]

J. Park, H.-J. Koo, B. Yoo, K. Yoo, K. Kim, W. Choi, and N.-G. Park, “On the I-V measurement of dye-sensitized solar cell: Effect of cell geometry on photovoltaic parameters,” Sol. Energy Mater. Sol. Cells 91(18), 1749–1754 (2007).
[CrossRef]

Kim, K.-J.

B. Yoo, K.-J. Kim, S.-Y. Bang, M. J. Ko, K. Kim, and N.-G. Park, “Chemically deposited blocking layers on FTO substrates: Effect of precursor concentration on photovoltaic performance of dye-sensitized solar cells,” J. Electroanal. Chem. 638(1), 161–166 (2010).
[CrossRef]

Kim, W. M.

B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N.-G. Park, “Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells,” J. Mater. Chem. 20(21), 4392–4398 (2010).
[CrossRef]

B. Yoo, K. Kim, S. H. Lee, W. M. Kim, and N.-G. Park, “ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 92(8), 873–877 (2008).
[CrossRef]

Kim, Y. H.

B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N.-G. Park, “Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells,” J. Mater. Chem. 20(21), 4392–4398 (2010).
[CrossRef]

Ko, M. J.

B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N.-G. Park, “Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells,” J. Mater. Chem. 20(21), 4392–4398 (2010).
[CrossRef]

B. Yoo, K.-J. Kim, S.-Y. Bang, M. J. Ko, K. Kim, and N.-G. Park, “Chemically deposited blocking layers on FTO substrates: Effect of precursor concentration on photovoltaic performance of dye-sensitized solar cells,” J. Electroanal. Chem. 638(1), 161–166 (2010).
[CrossRef]

Koide, N.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

Komiya, R.

N. Fuke, A. Fukui, A. Islam, R. Komiya, R. Yamanaka, L. Han, and H. Harima, “Electron transfer in back contact dye-sensitized solar cell,” J. Appl. Phys. 104(6), 064307 (2008).
[CrossRef]

N. Fuke, A. Fukui, R. Komiya, A. Islam, Y. Chiba, M. Yanagida, R. Yamanaka, and L. Han, “New approach to low-cost dye sensitized solar cells with back contact electrodes,” Chem. Mater. 20(15), 4974–4979 (2008).
[CrossRef]

N. Fuke, A. Fukui, Y. Chiba, R. Komiya, R. Yamanaka, and L. Han, “Back contact dye-sensitized solar cells,” Jpn. J. Appl. Phys. 46(18), L420–L422 (2007).
[CrossRef]

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

Koo, H.-J.

H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, “Size-dependant scattering efficiency in dye-sensitized solar cell,” Inorg. Chim. Acta 361(3), 677–683 (2008).
[CrossRef]

J. Park, H.-J. Koo, B. Yoo, K. Yoo, K. Kim, W. Choi, and N.-G. Park, “On the I-V measurement of dye-sensitized solar cell: Effect of cell geometry on photovoltaic parameters,” Sol. Energy Mater. Sol. Cells 91(18), 1749–1754 (2007).
[CrossRef]

Kopidakis, N.

N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B 107(41), 11307–11315 (2003).
[CrossRef]

K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the prercolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[CrossRef]

Kroon, J. M.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Lee, D.-K.

B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N.-G. Park, “Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells,” J. Mater. Chem. 20(21), 4392–4398 (2010).
[CrossRef]

Lee, H.

B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N.-G. Park, “Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells,” J. Mater. Chem. 20(21), 4392–4398 (2010).
[CrossRef]

Lee, S. H.

B. Yoo, K. Kim, S. H. Lee, W. M. Kim, and N.-G. Park, “ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 92(8), 873–877 (2008).
[CrossRef]

Liska, P.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grätzel, “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency,” Prog. Photovolt. Res. Appl. 14(7), 589–601 (2006).
[CrossRef]

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Nazeeruddin, M. K.

S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grätzel, “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency,” Prog. Photovolt. Res. Appl. 14(7), 589–601 (2006).
[CrossRef]

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

O’Regan, B.

B. O’Regan and M. Grätzel, “A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Palomares, E.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Park, J.

H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, “Size-dependant scattering efficiency in dye-sensitized solar cell,” Inorg. Chim. Acta 361(3), 677–683 (2008).
[CrossRef]

J. Park, H.-J. Koo, B. Yoo, K. Yoo, K. Kim, W. Choi, and N.-G. Park, “On the I-V measurement of dye-sensitized solar cell: Effect of cell geometry on photovoltaic parameters,” Sol. Energy Mater. Sol. Cells 91(18), 1749–1754 (2007).
[CrossRef]

Park, N.-G.

B. Yoo, K.-J. Kim, S.-Y. Bang, M. J. Ko, K. Kim, and N.-G. Park, “Chemically deposited blocking layers on FTO substrates: Effect of precursor concentration on photovoltaic performance of dye-sensitized solar cells,” J. Electroanal. Chem. 638(1), 161–166 (2010).
[CrossRef]

B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N.-G. Park, “Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells,” J. Mater. Chem. 20(21), 4392–4398 (2010).
[CrossRef]

H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, “Size-dependant scattering efficiency in dye-sensitized solar cell,” Inorg. Chim. Acta 361(3), 677–683 (2008).
[CrossRef]

N.-G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Status Solidi 205(8), 1895–1904 (2008) (a).
[CrossRef]

B. Yoo, K. Kim, S. H. Lee, W. M. Kim, and N.-G. Park, “ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 92(8), 873–877 (2008).
[CrossRef]

J. Park, H.-J. Koo, B. Yoo, K. Yoo, K. Kim, W. Choi, and N.-G. Park, “On the I-V measurement of dye-sensitized solar cell: Effect of cell geometry on photovoltaic parameters,” Sol. Energy Mater. Sol. Cells 91(18), 1749–1754 (2007).
[CrossRef]

Péchy, P.

S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grätzel, “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency,” Prog. Photovolt. Res. Appl. 14(7), 589–601 (2006).
[CrossRef]

Pettersson, H.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Sastrawan, R.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Selloni, A.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Skupien, K.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Smit, H. J. P.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Takeru, B.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Thampi, K. R.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Tulloch, G. E.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

van de Lagemaat, J.

N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B 107(41), 11307–11315 (2003).
[CrossRef]

K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the prercolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[CrossRef]

Viscardi, G.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

Walter, J.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Wang, P.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Watanabe, Y.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

Würfel, U.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

Yamanaka, R.

N. Fuke, A. Fukui, A. Islam, R. Komiya, R. Yamanaka, L. Han, and H. Harima, “Electron transfer in back contact dye-sensitized solar cell,” J. Appl. Phys. 104(6), 064307 (2008).
[CrossRef]

N. Fuke, A. Fukui, R. Komiya, A. Islam, Y. Chiba, M. Yanagida, R. Yamanaka, and L. Han, “New approach to low-cost dye sensitized solar cells with back contact electrodes,” Chem. Mater. 20(15), 4974–4979 (2008).
[CrossRef]

N. Fuke, A. Fukui, Y. Chiba, R. Komiya, R. Yamanaka, and L. Han, “Back contact dye-sensitized solar cells,” Jpn. J. Appl. Phys. 46(18), L420–L422 (2007).
[CrossRef]

Yanagida, M.

N. Fuke, A. Fukui, R. Komiya, A. Islam, Y. Chiba, M. Yanagida, R. Yamanaka, and L. Han, “New approach to low-cost dye sensitized solar cells with back contact electrodes,” Chem. Mater. 20(15), 4974–4979 (2008).
[CrossRef]

Yoo, B.

B. Yoo, K.-J. Kim, S.-Y. Bang, M. J. Ko, K. Kim, and N.-G. Park, “Chemically deposited blocking layers on FTO substrates: Effect of precursor concentration on photovoltaic performance of dye-sensitized solar cells,” J. Electroanal. Chem. 638(1), 161–166 (2010).
[CrossRef]

B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N.-G. Park, “Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells,” J. Mater. Chem. 20(21), 4392–4398 (2010).
[CrossRef]

H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, “Size-dependant scattering efficiency in dye-sensitized solar cell,” Inorg. Chim. Acta 361(3), 677–683 (2008).
[CrossRef]

B. Yoo, K. Kim, S. H. Lee, W. M. Kim, and N.-G. Park, “ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 92(8), 873–877 (2008).
[CrossRef]

J. Park, H.-J. Koo, B. Yoo, K. Yoo, K. Kim, W. Choi, and N.-G. Park, “On the I-V measurement of dye-sensitized solar cell: Effect of cell geometry on photovoltaic parameters,” Sol. Energy Mater. Sol. Cells 91(18), 1749–1754 (2007).
[CrossRef]

Yoo, K.

H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, “Size-dependant scattering efficiency in dye-sensitized solar cell,” Inorg. Chim. Acta 361(3), 677–683 (2008).
[CrossRef]

J. Park, H.-J. Koo, B. Yoo, K. Yoo, K. Kim, W. Choi, and N.-G. Park, “On the I-V measurement of dye-sensitized solar cell: Effect of cell geometry on photovoltaic parameters,” Sol. Energy Mater. Sol. Cells 91(18), 1749–1754 (2007).
[CrossRef]

Yoshida, Y.

Y. Kashiwa, Y. Yoshida, and S. Hayase, “All-metal-electrode-dye sensitized solar cells (transparent conductive oxide-less dye sensitized solar cell) consisting of thick and porous Ti electrode with straight pores,” Appl. Phys. Lett. 92(3), 033308 (2008).
[CrossRef]

Zakeeruddin, S. M.

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grätzel, “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency,” Prog. Photovolt. Res. Appl. 14(7), 589–601 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Kashiwa, Y. Yoshida, and S. Hayase, “All-metal-electrode-dye sensitized solar cells (transparent conductive oxide-less dye sensitized solar cell) consisting of thick and porous Ti electrode with straight pores,” Appl. Phys. Lett. 92(3), 033308 (2008).
[CrossRef]

Chem. Mater. (1)

N. Fuke, A. Fukui, R. Komiya, A. Islam, Y. Chiba, M. Yanagida, R. Yamanaka, and L. Han, “New approach to low-cost dye sensitized solar cells with back contact electrodes,” Chem. Mater. 20(15), 4974–4979 (2008).
[CrossRef]

Inorg. Chim. Acta (1)

H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, “Size-dependant scattering efficiency in dye-sensitized solar cell,” Inorg. Chim. Acta 361(3), 677–683 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc. 127(48), 16835–16847 (2005).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

N. Fuke, A. Fukui, A. Islam, R. Komiya, R. Yamanaka, L. Han, and H. Harima, “Electron transfer in back contact dye-sensitized solar cell,” J. Appl. Phys. 104(6), 064307 (2008).
[CrossRef]

J. Electroanal. Chem. (1)

B. Yoo, K.-J. Kim, S.-Y. Bang, M. J. Ko, K. Kim, and N.-G. Park, “Chemically deposited blocking layers on FTO substrates: Effect of precursor concentration on photovoltaic performance of dye-sensitized solar cells,” J. Electroanal. Chem. 638(1), 161–166 (2010).
[CrossRef]

J. Mater. Chem. (1)

B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N.-G. Park, “Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells,” J. Mater. Chem. 20(21), 4392–4398 (2010).
[CrossRef]

J. Photochem. Photobiol. Chem. (1)

M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 164(1–3), 3–14 (2004).
[CrossRef]

J. Phys. Chem. B (2)

N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B 107(41), 11307–11315 (2003).
[CrossRef]

K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the prercolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B 107(31), 7759–7767 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (2)

N. Fuke, A. Fukui, Y. Chiba, R. Komiya, R. Yamanaka, and L. Han, “Back contact dye-sensitized solar cells,” Jpn. J. Appl. Phys. 46(18), L420–L422 (2007).
[CrossRef]

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Jpn. J. Appl. Phys. 45(25), 638–640 (2006).
[CrossRef]

Nature (1)

B. O’Regan and M. Grätzel, “A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Phys. Status Solidi (1)

N.-G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors,” Phys. Status Solidi 205(8), 1895–1904 (2008) (a).
[CrossRef]

Prog. Photovolt. Res. Appl. (2)

J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, “Nanocrystalline dye-sensitized solar cells having maximum performance,” Prog. Photovolt. Res. Appl. 15(1), 1–18 (2007).
[CrossRef]

S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grätzel, “Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency,” Prog. Photovolt. Res. Appl. 14(7), 589–601 (2006).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

J. Park, H.-J. Koo, B. Yoo, K. Yoo, K. Kim, W. Choi, and N.-G. Park, “On the I-V measurement of dye-sensitized solar cell: Effect of cell geometry on photovoltaic parameters,” Sol. Energy Mater. Sol. Cells 91(18), 1749–1754 (2007).
[CrossRef]

B. Yoo, K. Kim, S. H. Lee, W. M. Kim, and N.-G. Park, “ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 92(8), 873–877 (2008).
[CrossRef]

Other (1)

R. M. Swanson, Proc. 17th IEEE Photovoltaics Specialists Conf., 1984, p1294.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic structure of a back-contact dye-sensitized solar cell, where charge collecting ITO is placed on the the nanocrystalline TiO2 layer coated on a non-conducting plain glass substrate.

Fig. 2
Fig. 2

Surface (a-c) and cross-sectional (d-f) scanning electron micrograph (SEM) images for the bare nc-TiO2 film; (a and d), the back-contact ITO film deposited on the nc-TiO2 film (d and e), and the TF-TiO2 film deposited on the back-contact ITO layer on the nc-TiO2 film (c and f).

Fig. 3
Fig. 3

(a) Cross-sectional SEM image of the nc-TiO2/ITO/TF-TiO2 layer on a plain glass substrate. (b) Atomic concentration with respect to sputter time obtained by AES depth profiling of the nc-TiO2/ITO/TF-TiO2 layer. Depth profiling rate was 20 nm/min.

Fig. 4
Fig. 4

Photocurrent-voltage and dark current-voltage curves for the conventional ITO-coated-glass-based DSSC and the back-contact DSSCs with and without a TF-TiO2 film. ITO deposition on a glass substrate was performed at the same condition as the back contact ITO deposition.

Fig. 5
Fig. 5

(a) Incident photon-to-current conversion efficiency (IPCE) spectra as a function of wavelength for the back-contact DSSCs with and without a TF-TiO2 film. (b) Comparison of transmittance of Vycor glasses coated with and without an ITO film. Measurement was performed in the presence of redox electrolyte.

Fig. 6
Fig. 6

(a) Time constants for electron transport (τ c) and (b) time constants for charge recombination (τ R) as a function of light intensity, represented by photocurrent density, for the back-contact ITO charge collector with and without a TF-TiO2 film.

Tables (1)

Tables Icon

Table 1 Shot-circuit photocurrent (J SC), open-circuit photovoltage (V OC), filll factor (FF) and overall conversion efficiency (η) of dye-sensitized solar cellsa with conventional structure and back-contact structure. Data were average values from 3 cells.

Metrics