Abstract

We present a concept for improving the efficiency of thin-film solar cells via scattering from dielectric particles. The particles are embedded directly within the semiconductor absorber material with sizes on the order of one wavelength. Importantly, this geometry is fully compatible with the use of an anti-reflective coating (ARC) to maximize light capture. The concept is demonstrated through finite-difference time domain (FDTD) simulations of spherical SiO2 particles embedded within a 1.0 µm layer of crystalline silicon (c-Si) utilizing a 75 nm ARC of Si3N4. Several geometries are presented, with gains in absorbed photon flux occurring in the red end of the spectrum where silicon absorption is weak. The total integrated absorption of incident photon flux across the visible AM-1.5 spectrum is on the order of 5-10% greater than the same geometry without any dielectric scatterers.

© 2010 OSA

Full Article  |  PDF Article

Errata

James R. Nagel and Michael A. Scarpulla, "Enhanced absorption in optically-thin solar cells by scattering from embedded dielectric nanoparticles: erratum," Opt. Express 18, A307-A307 (2010)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-S3-A307

References

  • View by:
  • |
  • |
  • |

  1. C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
    [CrossRef]
  2. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
    [CrossRef]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  4. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
    [CrossRef]
  5. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
    [CrossRef]
  6. Lumerical Solutions, Inc., http://www.lumerical.com/ .
  7. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998)
  8. A. Meldrum, L. A. Boatner, and C. W. White, “Nanocomposites formed by ion implantation: recent developments and future opportunities,” Nucl. Instrum. Methods Phys. Res. B 178(1-4), 7–16 (2001).
    [CrossRef]
  9. V. V. Voronkov and R. Falster, “Latent complexes of interstitial boron and oxygen dimers as a reason for degradation of silicon-based solar cells,” J. Appl. Phys. 107(5), 053509 (2010).
    [CrossRef]
  10. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2000).
  11. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).
  12. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  13. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [CrossRef]

2010 (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. V. Voronkov and R. Falster, “Latent complexes of interstitial boron and oxygen dimers as a reason for degradation of silicon-based solar cells,” J. Appl. Phys. 107(5), 053509 (2010).
[CrossRef]

2008 (2)

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

2006 (2)

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

2005 (1)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

2004 (1)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

2001 (1)

A. Meldrum, L. A. Boatner, and C. W. White, “Nanocomposites formed by ion implantation: recent developments and future opportunities,” Nucl. Instrum. Methods Phys. Res. B 178(1-4), 7–16 (2001).
[CrossRef]

Alamariu, B. A.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Boatner, L. A.

A. Meldrum, L. A. Boatner, and C. W. White, “Nanocomposites formed by ion implantation: recent developments and future opportunities,” Nucl. Instrum. Methods Phys. Res. B 178(1-4), 7–16 (2001).
[CrossRef]

Derkacs, D.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Drouard, E.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Duan, X.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Falster, R.

V. V. Voronkov and R. Falster, “Latent complexes of interstitial boron and oxygen dimers as a reason for degradation of silicon-based solar cells,” J. Appl. Phys. 107(5), 053509 (2010).
[CrossRef]

Fave, A.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Feng, N.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Fourmond, E.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Hong, C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Kaminski, A.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Kimerling, L. C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Lemiti, M.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Letartre, X.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Lim, S. H.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Liu, J.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Matheu, P.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

McPheeters, C.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

Meldrum, A.

A. Meldrum, L. A. Boatner, and C. W. White, “Nanocomposites formed by ion implantation: recent developments and future opportunities,” Nucl. Instrum. Methods Phys. Res. B 178(1-4), 7–16 (2001).
[CrossRef]

Park, Y.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Seassal, C.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Viktorovitch, P.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Voronkov, V. V.

V. V. Voronkov and R. Falster, “Latent complexes of interstitial boron and oxygen dimers as a reason for degradation of silicon-based solar cells,” J. Appl. Phys. 107(5), 053509 (2010).
[CrossRef]

White, C. W.

A. Meldrum, L. A. Boatner, and C. W. White, “Nanocomposites formed by ion implantation: recent developments and future opportunities,” Nucl. Instrum. Methods Phys. Res. B 178(1-4), 7–16 (2001).
[CrossRef]

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Yu, E. T.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Zeng, L.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[CrossRef]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

J. Appl. Phys. (2)

V. V. Voronkov and R. Falster, “Latent complexes of interstitial boron and oxygen dimers as a reason for degradation of silicon-based solar cells,” J. Appl. Phys. 107(5), 053509 (2010).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. B (1)

A. Meldrum, L. A. Boatner, and C. W. White, “Nanocomposites formed by ion implantation: recent developments and future opportunities,” Nucl. Instrum. Methods Phys. Res. B 178(1-4), 7–16 (2001).
[CrossRef]

Proc. SPIE (1)

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Other (4)

J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2000).

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).

Lumerical Solutions, Inc., http://www.lumerical.com/ .

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998)

Supplementary Material (2)

» Media 1: MOV (3760 KB)     
» Media 2: MOV (3768 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulated photon absorbencies of the thin-film silicon cell with an ARC. Figure (a) summarizes the baseline solar cell with no dielectric scatterer; (b) 6.3% gain using a single SiO2 sphere with diameter D = 100 nm centered at a depth of z = 150 nm; (c) 12.4% gain using a second sphere placed at a depth of z = 650 nm; (d) 7.4% gain using a hemisphere placed at the c-Si surface; (e) 2.2% gain using an Au sphere placed atop the c-Si with no ARC, but still 26.9% less than part (a); (f) 2.1% loss using an Au sphere (D = 100 nm) placed atop the ARC.

Fig. 2
Fig. 2

Mie scattering efficiency of SiO2 spheres of diameters D indicated embedded in an infinite medium of c-Si.

Fig. 3
Fig. 3

Peak electric field intensity profile (arbitrary units) at a wavelength of λ = 700 nm for (a) single particle in isolation (Media 1) and (b) periodic array of particles (Media 2). Similar results may be seen across the entire spectrum. Time-domain animations of these images are available in the supporting online material.

Fig. 4
Fig. 4

Efficiency trends versus particle density for periodic arrays of D = 200 nm diameter spheres of SiO2 embedded in c-Si at a depth of 150 nm. The points along the red vertical line at 6.25 x 108 / cm2 (400 nm spacing) summarize the absorption changes for the geometries in Fig. 1. At 2.5 x 109 / cm2 (200 nm), the dielectric spheres touch.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A ( z , λ ) = T ( 0 , λ ) T ( z , λ ) ,
S ( z , λ ) = A ( z , λ ) Φ o ( λ ) ,

Metrics