Abstract

A 30 kW concentrator photovoltaic power plant was constructed and has started operation with the following new technologies: A new Concentrating PhotoVoltaic (CPV) tracker developed for high wind area like Korea and Japan by Daido Steel. (The power consumption of the tracking motors was only 19.6 W, namely 0.07% of the rated power.) With improved optics that reduce the mismatch losses associated with optical aberrations, an efficiency of 25.8% was achieved under standard testing conditions (STC) even in a large 23.8 m2 array size. A rapid installation sequence was developed. It was designed for long-term power supply to a local sewage center. Peak power corresponds to 10% of the demand. As a result, the system performance ratio was 0.87, and the capacity factor was 11.7%. The energy generation per rated power was 1,020 kWh/kWp. While it is true that CPV systems perform better in dry and high irradiance areas, our 30 kW system installed in a cloudy area like Japan, showed satisfactory performance.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. W. Bett, F. Dimroth, W. Guter, R. Hoheisel, E. Oliva, S. P. Philipps, J. Schöne, G. Siefer, M. Steiner, A. Wekkeli, E. Welser, M. Meusel, W. Köstler, and G. Strobl, “Highest Efficiency Multi-Junction Solar Cell for Terrestrial and Space Applications”, Proc. 24th EUPVSEC, (2009), 1.
  2. A.W. Bett, F. Dimroth, W. Guter, J. Jaus, P. Nitz, E. Oliva, G. Peharz, S. Phillips, J. Schöne, T. Schult, G. Siefer, M. Steiner and E. Welser, “Raising the Efficiency of FLATCON®Modules”, 5th ICSC (2008).
  3. J. Monedero, and F. Dobon, “Two-Axis Tracking System TETRA-TRACK: System Description and Study for Optimized Space Factor”, CDROM of International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, (2003)
  4. P.J.Pérez, G.Almonacid, J.Aguilera, P.G.Vidal, J. de la Casa, I.Luque-Heredia, M. Doménech. “Multi-trackers Systems Calculation of Losses due to Self-shadowing”, 4th ICSC, (2008), 201.

Other (4)

A. W. Bett, F. Dimroth, W. Guter, R. Hoheisel, E. Oliva, S. P. Philipps, J. Schöne, G. Siefer, M. Steiner, A. Wekkeli, E. Welser, M. Meusel, W. Köstler, and G. Strobl, “Highest Efficiency Multi-Junction Solar Cell for Terrestrial and Space Applications”, Proc. 24th EUPVSEC, (2009), 1.

A.W. Bett, F. Dimroth, W. Guter, J. Jaus, P. Nitz, E. Oliva, G. Peharz, S. Phillips, J. Schöne, T. Schult, G. Siefer, M. Steiner and E. Welser, “Raising the Efficiency of FLATCON®Modules”, 5th ICSC (2008).

J. Monedero, and F. Dobon, “Two-Axis Tracking System TETRA-TRACK: System Description and Study for Optimized Space Factor”, CDROM of International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, (2003)

P.J.Pérez, G.Almonacid, J.Aguilera, P.G.Vidal, J. de la Casa, I.Luque-Heredia, M. Doménech. “Multi-trackers Systems Calculation of Losses due to Self-shadowing”, 4th ICSC, (2008), 201.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Photograph of 30 kW CPV system consists of 6 trackers.

Fig. 2
Fig. 2

Left: Ratio of irradiation utilization after influenced by the tracker in the center; Right: Correction by a new method.

Fig. 3
Fig. 3

I-V curve of one of the production modules.

Fig. 4
Fig. 4

How dust on the lens are washed by rainfall.

Fig. 5
Fig. 5

Total power consumption of motors of 30 kW CPV system as a function of temperature and culmination altitude of the sun

Fig. 6
Fig. 6

I-V curve of the 5 kW array

Fig. 7
Fig. 7

Efficiency and energy generation of 30 kW CPV system since grid connection. No cleaning we performed since installation.

Fig. 8
Fig. 8

Histogram of performance ratio by various levels of irradiance

Fig. 9
Fig. 9

Efficiency degradation as a function of the number of days after rainfall

Fig. 10
Fig. 10

Performance ratio at the noon vs. ambient temperature

Fig. 11
Fig. 11

Efficiency vs. air mass

Metrics