Abstract

Electronically controlled coherent linear optical sampling for low coherence interferometry (LCI) and optical coherence tomography (OCT) is demonstrated, using two turn-key commercial mode-locked fiber lasers with synchronized repetition rates. This novel technique prevents repetition rate limitations present in previous implementations based on asynchronous optical sampling. Adjustable scanning ranges and scanning rates are realized within an interferometric setup by full electronic control of the mutual time delay of the two laser pulse trains. We implement this novel linear optical sampling scheme with broad spectral bandwidths for LCI, optical filter characterization and OCT imaging in two and three dimensions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
    [CrossRef]
  2. F. E. Lytle, R. M. Parrish, and W. T. Barnes, “An introduction to time-resolved pump probe spectroscopy,” Appl. Spectrosc. 39(3), 444–451 (1985).
    [CrossRef]
  3. G. C. Cho, W. Kütt, and H. Kurz, “Subpicosecond time-resolved coherent-phonon oscillations in GaAs,” Phys. Rev. Lett. 65(6), 764–766 (1990).
    [CrossRef] [PubMed]
  4. N. G. Chen and Q. Zhu, “Rotary mirror array for high-speed optical coherence tomography,” Opt. Lett. 27(8), 607–609 (2002).
    [CrossRef]
  5. A. L. Oldenburg, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner,” Appl. Opt. 42(22), 4606–4611 (2003).
    [CrossRef] [PubMed]
  6. R. A. McLaughlin, J. P. Williamson, M. J. Phillips, J. J. Armstrong, S. Becker, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Applying anatomical optical coherence tomography to quantitative 3D imaging of the lower airway,” Opt. Express 16(22), 17521–17529 (2008).
    [CrossRef] [PubMed]
  7. T. Kanada and D. L. Franzen, “Optical waveform measurement by optical sampling with a mode-locked laser diode,” Opt. Lett. 11(1), 4–6 (1986).
    [CrossRef] [PubMed]
  8. P. A. Elzinga, F. E. Lytle, Y. Jian, G. B. King, and N. M. Laurendeau, “Pump probe spectroscopy by asynchronous optical-sampling,” Appl. Spectrosc. 41(1), 2–4 (1987).
    [CrossRef]
  9. C. Janke, M. Först, M. Nagel, H. Kurz, and A. Bartels, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett. 30(11), 1405–1407 (2005).
    [CrossRef] [PubMed]
  10. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
    [CrossRef]
  11. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
    [CrossRef] [PubMed]
  12. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
    [CrossRef]
  13. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
    [CrossRef] [PubMed]
  14. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
    [CrossRef] [PubMed]
  15. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [CrossRef] [PubMed]
  16. C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
    [CrossRef]
  17. S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
    [CrossRef]
  18. S. Kray, F. Spöler, M. Först, and H. Kurz, “Dual femtosecond laser multiheterodyne optical coherence tomography,” Opt. Lett. 33(18), 2092–2094 (2008).
    [CrossRef] [PubMed]
  19. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [CrossRef]
  20. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
    [CrossRef] [PubMed]
  21. B. L. Danielson and C. D. Whittenberg, “Guided-wave reflectometry with micrometer resolution,” Appl. Opt. 26(14), 2836–2842 (1987).
    [CrossRef] [PubMed]
  22. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  23. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997).
    [CrossRef]
  24. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
    [CrossRef] [PubMed]
  25. F. Tauser, C. Rausch, J. H. Posthumus, and F. Lison, “Electronically controlled optical sampling using 100 MHz repetition rate fiber lasers,” Proc. SPIE 6881, 68810O (2008).
    [CrossRef]
  26. F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express 15(17), 10832–10841 (2007).
    [CrossRef] [PubMed]
  27. S. Kray, F. Spöler, M. Först, and H. Kurz, “High-resolution simultaneous dual-band spectral domain optical coherence tomography,” Opt. Lett. 34(13), 1970–1972 (2009).
    [CrossRef] [PubMed]
  28. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [CrossRef]
  29. S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D Appl. Phys. 35(8), R43–R59 (2002).
    [CrossRef]
  30. F. Tauser, A. Leitenstorfer, and W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution,” Opt. Express 11(6), 594–600 (2003).
    [CrossRef] [PubMed]
  31. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16(7), 502–504 (1991).
    [CrossRef] [PubMed]
  32. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
    [CrossRef] [PubMed]
  33. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [CrossRef]
  34. G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis ,” J. Biomed. Opt. 3(1), 21–31 (1998).
    [CrossRef]
  35. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [CrossRef] [PubMed]
  36. U. H. P. Haberland, V. Blazek, and H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3(3), 259–266 (1998).
    [CrossRef]
  37. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  38. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [CrossRef]
  39. G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 605–621 (1996).
    [CrossRef]
  40. P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008).
    [CrossRef] [PubMed]

2009 (3)

2008 (6)

2007 (3)

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[CrossRef] [PubMed]

F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express 15(17), 10832–10841 (2007).
[CrossRef] [PubMed]

2006 (2)

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[CrossRef]

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

2003 (5)

F. Tauser, A. Leitenstorfer, and W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution,” Opt. Express 11(6), 594–600 (2003).
[CrossRef] [PubMed]

A. L. Oldenburg, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner,” Appl. Opt. 42(22), 4606–4611 (2003).
[CrossRef] [PubMed]

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
[CrossRef]

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

2002 (3)

2001 (1)

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

1998 (2)

U. H. P. Haberland, V. Blazek, and H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3(3), 259–266 (1998).
[CrossRef]

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis ,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

1997 (2)

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997).
[CrossRef]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[CrossRef] [PubMed]

1996 (1)

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 605–621 (1996).
[CrossRef]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16(7), 502–504 (1991).
[CrossRef] [PubMed]

1990 (1)

G. C. Cho, W. Kütt, and H. Kurz, “Subpicosecond time-resolved coherent-phonon oscillations in GaAs,” Phys. Rev. Lett. 65(6), 764–766 (1990).
[CrossRef] [PubMed]

1987 (2)

1986 (1)

1985 (1)

1969 (1)

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[CrossRef]

Araki, T.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[CrossRef]

Armstrong, J. J.

Barnes, W. T.

Baro, A. M.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Bartels, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[CrossRef] [PubMed]

C. Janke, M. Först, M. Nagel, H. Kurz, and A. Bartels, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett. 30(11), 1405–1407 (2005).
[CrossRef] [PubMed]

Becker, S.

Birngruber, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997).
[CrossRef]

Blazek, V.

U. H. P. Haberland, V. Blazek, and H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3(3), 259–266 (1998).
[CrossRef]

Boppart, S. A.

Bornemann, J.

Brehm, M.

Cable, A.

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, N. G.

Chen, Y. L.

Chinn, S. R.

Cho, G. C.

G. C. Cho, W. Kütt, and H. Kurz, “Subpicosecond time-resolved coherent-phonon oscillations in GaAs,” Phys. Rev. Lett. 65(6), 764–766 (1990).
[CrossRef] [PubMed]

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
[CrossRef] [PubMed]

Colchero, J.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D Appl. Phys. 35(8), R43–R59 (2002).
[CrossRef]

Danielson, B. L.

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[CrossRef] [PubMed]

Deschênes, J. D.

Dorrer, C.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
[CrossRef]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Duguay, M. A.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[CrossRef]

Eastwood, P. R.

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Elzinga, P. A.

Engelhardt, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997).
[CrossRef]

Feder, K. S.

Fejer, M. M.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Fermann, M. E.

Fernández, R.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Först, M.

Franzen, D. L.

Fujimoto, J. G.

Genest, J.

Giaccari, P.

Gohle, C.

Gómez-Herrero, J.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Gómez-Rodríguez, J. M.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grychtol, P.

Haberl, F.

Haberland, U. H. P.

U. H. P. Haberland, V. Blazek, and H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3(3), 259–266 (1998).
[CrossRef]

Hansen, J. W.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[CrossRef]

Harter, D. J.

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 605–621 (1996).
[CrossRef]

Hartl, I.

Häusler, G.

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis ,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermes, B.

Hillman, D. R.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Hofer, M.

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 605–621 (1996).
[CrossRef]

M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16(7), 502–504 (1991).
[CrossRef] [PubMed]

Holzwarth, R.

Horcas, I.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[CrossRef] [PubMed]

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[CrossRef] [PubMed]

C. Janke, M. Först, M. Nagel, H. Kurz, and A. Bartels, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett. 30(11), 1405–1407 (2005).
[CrossRef] [PubMed]

Jian, Y.

Jiang, J.

Kabetani, Y.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Kanada, T.

Keilmann, F.

Kilper, D. C.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
[CrossRef]

King, G. B.

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[CrossRef] [PubMed]

Kourogi, M.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Kray, S.

Kurz, H.

Kütt, W.

G. C. Cho, W. Kütt, and H. Kurz, “Subpicosecond time-resolved coherent-phonon oscillations in GaAs,” Phys. Rev. Lett. 65(6), 764–766 (1990).
[CrossRef] [PubMed]

Langrock, C.

Lankenau, E.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Laurendeau, N. M.

Lee, S. J.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Leitenstorfer, A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis ,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

Lison, F.

F. Tauser, C. Rausch, J. H. Posthumus, and F. Lison, “Electronically controlled optical sampling using 100 MHz repetition rate fiber lasers,” Proc. SPIE 6881, 68810O (2008).
[CrossRef]

Lytle, F. E.

Marks, D. L.

McFerran, J. J.

McLaughlin, R. A.

Nagel, M.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
[CrossRef] [PubMed]

Nicholson, J. W.

Ober, M. H.

Ohtsu, M.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Oldenburg, A. L.

Parrish, R. M.

Phillips, M. J.

Posthumus, J. H.

F. Tauser, C. Rausch, J. H. Posthumus, and F. Lison, “Electronically controlled optical sampling using 100 MHz repetition rate fiber lasers,” Proc. SPIE 6881, 68810O (2008).
[CrossRef]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rausch, C.

F. Tauser, C. Rausch, J. H. Posthumus, and F. Lison, “Electronically controlled optical sampling using 100 MHz repetition rate fiber lasers,” Proc. SPIE 6881, 68810O (2008).
[CrossRef]

Raybon, G.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
[CrossRef]

Raymer, M. G.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
[CrossRef]

Reynolds, J. J.

Sampson, D. D.

Saneyoshi, E.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[CrossRef]

Saucier, P.

Schiller, S.

Schliesser, A.

Schmidt, A. J.

Schmitt, H. J.

U. H. P. Haberland, V. Blazek, and H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3(3), 259–266 (1998).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Spöler, F.

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stuart, H. R.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
[CrossRef]

Sucha, G.

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 605–621 (1996).
[CrossRef]

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
[CrossRef] [PubMed]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tauser, F.

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[CrossRef] [PubMed]

Tremblay, P.

van der Weide, D. W.

Welzel, J.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997).
[CrossRef]

Westbrook, P. S.

Whittenberg, C. D.

Widiyatmoko, B.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Williamson, J. P.

Yasui, T.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[CrossRef]

Ye, J.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

Yokoyama, S.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[CrossRef]

Zhu, Q.

Zinth, W.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[CrossRef]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006).
[CrossRef]

Appl. Spectrosc. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 605–621 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
[CrossRef]

J. Am. Acad. Dermatol. (1)

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37(6), 958–963 (1997).
[CrossRef]

J. Biomed. Opt. (2)

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis ,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

U. H. P. Haberland, V. Blazek, and H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3(3), 259–266 (1998).
[CrossRef]

J. Phys. D Appl. Phys. (1)

S. T. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D Appl. Phys. 35(8), R43–R59 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Nat. Photonics (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express (6)

F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express 15(17), 10832–10841 (2007).
[CrossRef] [PubMed]

P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

R. A. McLaughlin, J. P. Williamson, M. J. Phillips, J. J. Armstrong, S. Becker, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Applying anatomical optical coherence tomography to quantitative 3D imaging of the lower airway,” Opt. Express 16(22), 17521–17529 (2008).
[CrossRef] [PubMed]

A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
[CrossRef] [PubMed]

F. Tauser, A. Leitenstorfer, and W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution,” Opt. Express 11(6), 594–600 (2003).
[CrossRef] [PubMed]

Opt. Lett. (11)

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
[CrossRef] [PubMed]

S. Kray, F. Spöler, M. Först, and H. Kurz, “High-resolution simultaneous dual-band spectral domain optical coherence tomography,” Opt. Lett. 34(13), 1970–1972 (2009).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[CrossRef] [PubMed]

S. Kray, F. Spöler, M. Först, and H. Kurz, “Dual femtosecond laser multiheterodyne optical coherence tomography,” Opt. Lett. 33(18), 2092–2094 (2008).
[CrossRef] [PubMed]

T. Kanada and D. L. Franzen, “Optical waveform measurement by optical sampling with a mode-locked laser diode,” Opt. Lett. 11(1), 4–6 (1986).
[CrossRef] [PubMed]

M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16(7), 502–504 (1991).
[CrossRef] [PubMed]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
[CrossRef] [PubMed]

C. Janke, M. Först, M. Nagel, H. Kurz, and A. Bartels, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett. 30(11), 1405–1407 (2005).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[CrossRef] [PubMed]

N. G. Chen and Q. Zhu, “Rotary mirror array for high-speed optical coherence tomography,” Opt. Lett. 27(8), 607–609 (2002).
[CrossRef]

S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

G. C. Cho, W. Kütt, and H. Kurz, “Subpicosecond time-resolved coherent-phonon oscillations in GaAs,” Phys. Rev. Lett. 65(6), 764–766 (1990).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

Proc. SPIE (1)

F. Tauser, C. Rausch, J. H. Posthumus, and F. Lison, “Electronically controlled optical sampling using 100 MHz repetition rate fiber lasers,” Proc. SPIE 6881, 68810O (2008).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

Rev. Sci. Instrum. (2)

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: AVI (2661 KB)     
» Media 2: AVI (500 KB)     
» Media 3: AVI (4140 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Generation of correlation signals with (a) v = 7.5 m/s (Media 2). The simulation data was obtained for a pulsed laser with a repetition rate of fREP = 100 MHz and a spectral bandwidth of Δλ = 70nm FWHM.

Fig. 2
Fig. 2

Scanning rate fφ and samples/A-Scan in dependence of the overall laser repetition rate of ASOPS scanning. All curves are plotted for three different coherence lengths of lc = 15.7, 8.0 and 1.7 µm. The perpendicular colored dashed lines correspond to the parameters of the three commercial light sources mentioned above.

Fig. 3
Fig. 3

: Operation principle of electronically controlled coherent linear optical sampling. (a) Pulse trains of both lasers (solid red and yellow lines) in dependence of the phase control signal φ(t) (dashed green line). The mutual pulse delay τ is determined by the phase signal. The pulse delay increases or decreases, depending on the sign of the phase signal slope. The zero-point is reached again after the full cycle time 1/fφ. Inset: electric fields of the pulses. (b) Repetition rate change ΔfREP in dependence of the phase control signal. (c) Frequency domain picture of the resulting (time dependent) frequency combs. Neighboring modes of the combs are separated by a difference frequency, depending on the slope of the phase signal, the laser repetition rates and the individual carrier envelope offset frequencies.

Fig. 4
Fig. 4

(a) Optical setup of the experiment. DC: dispersion compensation, ND: neutral density filter, BS: beamsplitter. (b) Electrical setup for the laser control. PD: photo detector, PZT: piezoelectric transducer, fM: frequency of the master laser, fS: frequency of the slave laser, Uout, piezoelectric transducer voltage output, φ: phase input, FGen: frequency generator, BP: bandpass filter, Amp: analog logarithmic amplifier. (c) Setup of the commercial fiber laser. WDM: wavelength division multiplexing, Er:fiber: erbium doped fiber, Pol: polarization control, Iso: isolator, PBS: polarizing beam splitter, Col: fiber collimator

Fig. 5
Fig. 5

Output spectra of (a) laser 1 (slave laser) and (b) laser 2 (master laser), respectively. The full widths at half maximum spectral bandwidths were determined to be 94 and 69 nm, respectively.

Fig. 6
Fig. 6

LCI scans of a coverslip, measured with fφ = 492 Hz. The gray curves show a single measurement, orange curves represent averaged signals. (a) Correlation signal of the air-glass and glass-air interface of the coverslip. (b) Magnification of the air-glass interface of the correlation signal.

Fig. 7
Fig. 7

Time- and frequency domain response of an optical bandstop filter, measured with fφ = 51 Hz. (a) Time domain transient of the full (gray) and filtered (orange) spectral bandwidth. (b) Corresponding frequency domain response.

Fig. 8
Fig. 8

Two-dimensional OCT images of (a) a human nail fold (3.3 mm width x 2.3 mm height) measured with fφ = 52 Hz, (b) an adhesive tape role (2.25 mm width x 72 mm height) and (c) magnified region of the adhesive tape role (2.25 mm width x 7 mm height), measured with fφ = 37 Hz. E: epidermis, D: dermis, N: nail plate. The scale bar in (b) corresponds to 1 mm in horizontal and 10 mm in vertical direction.

Fig. 9
Fig. 9

Three-dimensional images of the coin surface, measured with fφ = 100 Hz. (a) 2D projection of the surface profile of a two cent Euro coin. (b) 3D plot showing the same cross-section. For demonstration purposes, the distance to the ground surface is not plotted with the same z-scale as the surface profile. (c) Fly-through movie (Media 3) across 1/3 of the measured scanning range (9 mm width x 8.7 mm height x 40 mm depth).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

vlc3τ=lcfREP3.
ΔfREP=vzmax23lcfREP2c0.
fBEAT=(nfREP2+fCEO2)(nfREP1+fCEO1)=(nΔfREP(t)+ΔfCEO).
ΔfREP(t)=vgzcvgzc+Δz(t)vgΔz(t)zc2=fREPΔz(t)zc.
fCEO=ωcvg2π(1vg1vp),

Metrics