Abstract

We experimentally demonstrate an integrated semiconductor ridge microcavity source of counterpropagating twin photons at room temperature in the telecom range. Based on type II parametric down conversion with a counterpropagating phase-matching, pump photons generate photon pairs with an efficiency of about 10-11 and a spectral linewidth of 0.3 nm for a 1 mm long sample. The indistiguishability of the photons of the pair is measured via a Hong-Ou-Mandel two-photon interference experiment showing a visibility of 85 %. This work opens a route towards new guided-wave semiconductor quantum devices.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Tittel, and G. Weihs, “Photonic Entanglement for fundamental tests and quantum communication,” Quantum Inf. Comput. 1, 3–56 (2001).
  2. M. Atatüre, G. Di Giuseppe, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Multiparameter entanglement in femtosecond parametric down-conversion,” Phys. Rev. A 65, 023808 (2002).
    [CrossRef]
  3. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
    [CrossRef]
  4. E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [CrossRef]
  5. V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock Synchronization with Dispersion Cancellation,” Phys. Rev. Lett. 87, 117902 (2001).
    [CrossRef] [PubMed]
  6. Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052317 (2004).
    [CrossRef]
  7. D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys. 2, 36 (2006).
    [CrossRef]
  8. S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
    [CrossRef] [PubMed]
  9. W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
    [CrossRef]
  10. R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” N. J. Phys. 8, 29 (2006).
    [CrossRef]
  11. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
    [CrossRef] [PubMed]
  12. L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor Waveguide Source of Counterpropagating Twin Photons,” Phys. Rev. Lett. 97, 173901 (2006).
    [CrossRef] [PubMed]
  13. M. Aspelmeyer, “Quantum optics: Enlightened chips,” Nat. Photonics 1, 94–95 (2007).
    [CrossRef]
  14. Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
    [CrossRef]
  15. A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
    [CrossRef]
  16. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [CrossRef] [PubMed]
  17. K. Wang, “Quantum theory of two-photon wave packet interference in a beamsplitter,” J. Phys. B 39, R293–R324 (2006).
    [CrossRef]
  18. The use of expression (2), established for a monochromatic pump beam, is justified in our case by the following argument: since the pump laser is largely multimode, the expression of Nc can be evaluated by integrating expression (2) over the spectral bandwidth of the pump. By doing this we have verified that the shape of the dip (in particular V and ⊗z) is not affected by the pump bandwidth.
  19. A. De Rossi, and V. Berger, “Counterpropagating Twin Photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
    [CrossRef] [PubMed]
  20. A. Martin, V. Cristofori, P. Aboussouan, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “Integrated optical source of polarization entangled photons at 1310 nm,” Opt. Express 17, 1033–1041 (2009).
    [CrossRef] [PubMed]
  21. T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber coupled periodically poled KTiOPO4 waveguide,” Opt. Express 17, 12019–12030 (2009).
    [CrossRef] [PubMed]
  22. X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
    [CrossRef]

2009 (3)

2008 (1)

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

2007 (1)

M. Aspelmeyer, “Quantum optics: Enlightened chips,” Nat. Photonics 1, 94–95 (2007).
[CrossRef]

2006 (6)

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” N. J. Phys. 8, 29 (2006).
[CrossRef]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor Waveguide Source of Counterpropagating Twin Photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

K. Wang, “Quantum theory of two-photon wave packet interference in a beamsplitter,” J. Phys. B 39, R293–R324 (2006).
[CrossRef]

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys. 2, 36 (2006).
[CrossRef]

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

2004 (1)

Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052317 (2004).
[CrossRef]

2003 (1)

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[CrossRef]

2002 (2)

A. De Rossi, and V. Berger, “Counterpropagating Twin Photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
[CrossRef] [PubMed]

M. Atatüre, G. Di Giuseppe, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Multiparameter entanglement in femtosecond parametric down-conversion,” Phys. Rev. A 65, 023808 (2002).
[CrossRef]

2001 (5)

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock Synchronization with Dispersion Cancellation,” Phys. Rev. Lett. 87, 117902 (2001).
[CrossRef] [PubMed]

G. Tittel, and G. Weihs, “Photonic Entanglement for fundamental tests and quantum communication,” Quantum Inf. Comput. 1, 3–56 (2001).

W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Aboussouan, P.

Akopian, N.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Alibart, O.

Andronico, A.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

Aspelmeyer, M.

M. Aspelmeyer, “Quantum optics: Enlightened chips,” Nat. Photonics 1, 94–95 (2007).
[CrossRef]

Atatüre, M.

M. Atatüre, G. Di Giuseppe, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Multiparameter entanglement in femtosecond parametric down-conversion,” Phys. Rev. A 65, 023808 (2002).
[CrossRef]

Atkinson, P.

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” N. J. Phys. 8, 29 (2006).
[CrossRef]

Avron, J.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Battle, P.

Berger, V.

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[CrossRef]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor Waveguide Source of Counterpropagating Twin Photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

A. De Rossi, and V. Berger, “Counterpropagating Twin Photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
[CrossRef] [PubMed]

Berlatzky, Y.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Blakestad, R. B.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Bollinger, J. J.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Booth, M. C.

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[CrossRef]

Britton, J.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Caillet, X.

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[CrossRef]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

Chiaverini, J.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Cooper, K.

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” N. J. Phys. 8, 29 (2006).
[CrossRef]

Cristofori, V.

De Rossi, A.

A. De Rossi, and V. Berger, “Counterpropagating Twin Photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
[CrossRef] [PubMed]

Di Giuseppe, G.

M. Atatüre, G. Di Giuseppe, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Multiparameter entanglement in femtosecond parametric down-conversion,” Phys. Rev. A 65, 023808 (2002).
[CrossRef]

Ducci, S.

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[CrossRef]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor Waveguide Source of Counterpropagating Twin Photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

Epstein, R. J.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Favero, I.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

Gerardot, B. D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Gershoni, D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Giovannetti, V.

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock Synchronization with Dispersion Cancellation,” Phys. Rev. Lett. 87, 117902 (2001).
[CrossRef] [PubMed]

Grice, W. P.

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

Hansch, T. W.

W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef]

Hansel, W.

W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef]

Hensinger, W. K.

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys. 2, 36 (2006).
[CrossRef]

Herrmann, H.

Hommelhoff, P.

W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Hume, D. B.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Itano, W. M.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Jost, J. D.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Laflamme, R.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Lanco, L.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor Waveguide Source of Counterpropagating Twin Photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

Langer, C.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Leibfried, D.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Leo, G.

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[CrossRef]

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor Waveguide Source of Counterpropagating Twin Photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

Likforman, J.-P.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor Waveguide Source of Counterpropagating Twin Photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

Lindner, N. H.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Lloyd, S.

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock Synchronization with Dispersion Cancellation,” Phys. Rev. Lett. 87, 117902 (2001).
[CrossRef] [PubMed]

Maccone, L.

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock Synchronization with Dispersion Cancellation,” Phys. Rev. Lett. 87, 117902 (2001).
[CrossRef] [PubMed]

Madsen, M. J.

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys. 2, 36 (2006).
[CrossRef]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Marcadet, X.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor Waveguide Source of Counterpropagating Twin Photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

Martin, A.

Milburn, G.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Monroe, C.

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys. 2, 36 (2006).
[CrossRef]

Olmschenk, S.

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys. 2, 36 (2006).
[CrossRef]

Ostrowsky, D. B.

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Ozeri, R.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Petroff, P. M.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Poem, E.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

Reichel, J.

W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef]

Reichle, R.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Ritchie, D. A.

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” N. J. Phys. 8, 29 (2006).
[CrossRef]

Roberts, T. D.

Saleh, B. E. A.

Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052317 (2004).
[CrossRef]

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[CrossRef]

M. Atatüre, G. Di Giuseppe, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Multiparameter entanglement in femtosecond parametric down-conversion,” Phys. Rev. A 65, 023808 (2002).
[CrossRef]

Schwab, K.

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys. 2, 36 (2006).
[CrossRef]

Seidelin, S.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Sergienko, A. V.

Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052317 (2004).
[CrossRef]

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[CrossRef]

M. Atatüre, G. Di Giuseppe, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Multiparameter entanglement in femtosecond parametric down-conversion,” Phys. Rev. A 65, 023808 (2002).
[CrossRef]

Shaw, M. D.

M. Atatüre, G. Di Giuseppe, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Multiparameter entanglement in femtosecond parametric down-conversion,” Phys. Rev. A 65, 023808 (2002).
[CrossRef]

Shields, A. J.

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” N. J. Phys. 8, 29 (2006).
[CrossRef]

Shiga, N.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Sohler, W.

Stevenson, R. M.

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” N. J. Phys. 8, 29 (2006).
[CrossRef]

Stick, D.

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys. 2, 36 (2006).
[CrossRef]

Tanzilli, S.

Teich, M. C.

Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052317 (2004).
[CrossRef]

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[CrossRef]

M. Atatüre, G. Di Giuseppe, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Multiparameter entanglement in femtosecond parametric down-conversion,” Phys. Rev. A 65, 023808 (2002).
[CrossRef]

Tittel, G.

G. Tittel, and G. Weihs, “Photonic Entanglement for fundamental tests and quantum communication,” Quantum Inf. Comput. 1, 3–56 (2001).

U’Ren, A. B.

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

van Houwelingen, J. A. W.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor Waveguide Source of Counterpropagating Twin Photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

Walmsley, I. A.

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

Walton, Z. D.

Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052317 (2004).
[CrossRef]

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[CrossRef]

Wang, K.

K. Wang, “Quantum theory of two-photon wave packet interference in a beamsplitter,” J. Phys. B 39, R293–R324 (2006).
[CrossRef]

Weihs, G.

G. Tittel, and G. Weihs, “Photonic Entanglement for fundamental tests and quantum communication,” Quantum Inf. Comput. 1, 3–56 (2001).

Wesenberg, J. H.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Wineland, D. J.

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

Wong, F. N. C.

Young, R. J.

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” N. J. Phys. 8, 29 (2006).
[CrossRef]

Zbinden, H.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor Waveguide Source of Counterpropagating Twin Photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

Zhong, T.

J. Eur. Opt. Soc. Rapid Publ. (1)

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, “Semiconductor microcavities for enhanced nonlinear optics interactions,” J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

J. Mod. Opt. (1)

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[CrossRef]

J. Phys. B (1)

K. Wang, “Quantum theory of two-photon wave packet interference in a beamsplitter,” J. Phys. B 39, R293–R324 (2006).
[CrossRef]

N. J. Phys. (1)

R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” N. J. Phys. 8, 29 (2006).
[CrossRef]

Nat. Photonics (1)

M. Aspelmeyer, “Quantum optics: Enlightened chips,” Nat. Photonics 1, 94–95 (2007).
[CrossRef]

Nat. Phys. (1)

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys. 2, 36 (2006).
[CrossRef]

Nature (2)

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (4)

M. Atatüre, G. Di Giuseppe, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Multiparameter entanglement in femtosecond parametric down-conversion,” Phys. Rev. A 65, 023808 (2002).
[CrossRef]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052317 (2004).
[CrossRef]

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[CrossRef]

Phys. Rev. Lett. (6)

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[CrossRef] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor Waveguide Source of Counterpropagating Twin Photons,” Phys. Rev. Lett. 97, 173901 (2006).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, “Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing,” Phys. Rev. Lett. 96, 253003 (2006).
[CrossRef] [PubMed]

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock Synchronization with Dispersion Cancellation,” Phys. Rev. Lett. 87, 117902 (2001).
[CrossRef] [PubMed]

A. De Rossi, and V. Berger, “Counterpropagating Twin Photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
[CrossRef] [PubMed]

Quantum Inf. Comput. (1)

G. Tittel, and G. Weihs, “Photonic Entanglement for fundamental tests and quantum communication,” Quantum Inf. Comput. 1, 3–56 (2001).

Other (1)

The use of expression (2), established for a monochromatic pump beam, is justified in our case by the following argument: since the pump laser is largely multimode, the expression of Nc can be evaluated by integrating expression (2) over the spectral bandwidth of the pump. By doing this we have verified that the shape of the dip (in particular V and ⊗z) is not affected by the pump bandwidth.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Parametric generation of counterpropagating twin photons in a multilayer waveguide. (a) Counterpropagating phase-matching scheme. The phase matching is automatically obtained in the z direction; QPM is provided by a periodic modulation of the nonlinear susceptibility in the waveguide core along the epitaxial direction. (b) Amplitude of the interacting modes and optical index profile of the microcavity. The pump field enhancement strongly improves the generation efficiency.

Fig. 2.
Fig. 2.

Tunability curves and emission spectra. (a) Line: Calculated tuning curves as a function of the pump incident angle for a pump wavelength of 760nm and the structure described in the text. Dashed lines show the selected incident angles for the experiments. (b) SPDC spectra for an angle of incidence of θ 1 = 3.1° in the photon-counting regime. The peaks correspond to the four kinds of photons that can be generated via the two possible interactions. The background noise here is due to the dark counts of the detectors. Path R(L) denote the detection path of photons exiting the right (left) facet.

Fig. 3.
Fig. 3.

Two-photon interference set-up and HOM dip. (a) Sketch of the experimental setup used for the two photon interference. The two photons generated in the selected interaction are combined in a fibered 50/50 coupler, where quantum interference occurs. The polarization of one of the two photons is rotated of 90° with a half-wave plate. A retroreflector placed in one arm of the interferometer is used to adjust the relative delay of the two photons. (b) Coincidence counts in 3 min (total counts - accidental counts) as a function of the relative length of the two arms. The accidental coincidence counts accounts for 14 % of the total coincidence counts outside the dip. The coincidence windows taken into account is 400 ps. The error bars are determined by the Poisson distribution (the square-root sum of the total coincidence counts) and the solid line is the numerical fit.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ηcavityη0=2(1+n)2πnF1+1+Tdown/Tup
Nc=1Vexp (π2log2[ΔzΔλλ2]2)

Metrics