Abstract

A novel liquid-filled lens design is presented. During fabrication, high precision single point diamond turning (SPDT) is introduced into standard soft lithography process to fabricate an aspherical surface constituting one end of lens. This enables the spherical aberration associated with the operation of the conventional liquid-filled lenses to be compensated for. Through flexibly optimizing this surface contour, it can be designed to work within particular working regions with improved optical quality. At the same time, the deformable elastic membrane is still adopted at the other end of the lens, thus preserving the high focal length tunability. This proof of concept and the performance of the proposed lens have been demonstrated using the lateral shearing interferometry experiment..

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Gross, Handbook of Optical Systems. Weiheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2005.
  2. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
    [CrossRef]
  3. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
    [CrossRef] [PubMed]
  4. D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43(4), 783–787 (2004).
    [CrossRef] [PubMed]
  5. H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17(6), 4782–4790 (2009).
    [CrossRef] [PubMed]
  6. L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, “Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device,” Opt. Express 13(22), 9003–9013 (2005).
    [CrossRef] [PubMed]
  7. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004).
    [CrossRef] [PubMed]
  8. J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
    [CrossRef]
  9. D. Y. Zhang, N. Justis, and Y. H. Lo, “Integrated fluidic adaptive zoom lens,” Opt. Lett. 29(24), 2855–2857 (2004).
    [CrossRef]
  10. W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21(5), 304–306 (2009).
    [CrossRef]
  11. F. S. Tsai, S. H. Cho, Y. H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008).
    [CrossRef] [PubMed]
  12. H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18(10), 105017 (2008).
    [CrossRef]
  13. D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive lens of transformable lens type,” Appl. Phys. Lett. 84(21), 4194–4196 (2004).
    [CrossRef]
  14. Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “Optofluidic variable aperture,” Opt. Lett. 33(6), 548–550 (2008).
    [CrossRef] [PubMed]
  15. H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng. 18(11), 115016 (2008).
    [CrossRef]
  16. H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “Simple method for fabricating solid microlenses with different focal lengths,” IEEE Photon. Technol. Lett. 20(19), 1624–1626 (2008).
    [CrossRef]
  17. Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47(20), 3658–3668 (2008).
    [CrossRef] [PubMed]
  18. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
    [CrossRef]
  19. L. Zhu, Y. Huang, and A. Yariv, “Integrated microfluidic variable optical attenuator,” Opt. Express 13(24), 9916–9921 (2005).
    [CrossRef] [PubMed]
  20. X. F. Zeng and H. R. Jiang, “Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding,” J. Microelectromech. Syst. 17(5), 1210–1217 (2008).
    [CrossRef]

2009 (2)

H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17(6), 4782–4790 (2009).
[CrossRef] [PubMed]

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21(5), 304–306 (2009).
[CrossRef]

2008 (7)

F. S. Tsai, S. H. Cho, Y. H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008).
[CrossRef] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18(10), 105017 (2008).
[CrossRef]

Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “Optofluidic variable aperture,” Opt. Lett. 33(6), 548–550 (2008).
[CrossRef] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng. 18(11), 115016 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “Simple method for fabricating solid microlenses with different focal lengths,” IEEE Photon. Technol. Lett. 20(19), 1624–1626 (2008).
[CrossRef]

Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47(20), 3658–3668 (2008).
[CrossRef] [PubMed]

X. F. Zeng and H. R. Jiang, “Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding,” J. Microelectromech. Syst. 17(5), 1210–1217 (2008).
[CrossRef]

2005 (2)

2004 (5)

2003 (2)

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
[CrossRef]

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
[CrossRef] [PubMed]

1998 (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

Berdichevsky, Y.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43(4), 783–787 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
[CrossRef]

Campbell, K.

Chau, F. K.

Chau, F. S.

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18(10), 105017 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng. 18(11), 115016 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “Simple method for fabricating solid microlenses with different focal lengths,” IEEE Photon. Technol. Lett. 20(19), 1624–1626 (2008).
[CrossRef]

Chen, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

Cho, S. H.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21(5), 304–306 (2009).
[CrossRef]

F. S. Tsai, S. H. Cho, Y. H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008).
[CrossRef] [PubMed]

Choi, J.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
[CrossRef]

Christian, W.

Chronis, N.

Fainman, Y.

Fang, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

Feiwen, L.

Groisman, A.

Guangya, Z.

Hongbin, Y.

Huang, Y.

Jeong, K. H.

Jiang, H. R.

X. F. Zeng and H. R. Jiang, “Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding,” J. Microelectromech. Syst. 17(5), 1210–1217 (2008).
[CrossRef]

Justis, N.

Kobrin, P.

Lee, F. W.

H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17(6), 4782–4790 (2009).
[CrossRef] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18(10), 105017 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “Simple method for fabricating solid microlenses with different focal lengths,” IEEE Photon. Technol. Lett. 20(19), 1624–1626 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng. 18(11), 115016 (2008).
[CrossRef]

Lee, L. P.

Leung, H. M.

Levy, U.

Lien, V.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43(4), 783–787 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
[CrossRef]

Liu, G. L.

Lo, Y. H.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21(5), 304–306 (2009).
[CrossRef]

F. S. Tsai, S. H. Cho, Y. H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008).
[CrossRef] [PubMed]

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43(4), 783–787 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, N. Justis, and Y. H. Lo, “Integrated fluidic adaptive zoom lens,” Opt. Lett. 29(24), 2855–2857 (2004).
[CrossRef]

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive lens of transformable lens type,” Appl. Phys. Lett. 84(21), 4194–4196 (2004).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
[CrossRef]

Narayanaswamy, S.

Pang, L.

Qiao, W.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21(5), 304–306 (2009).
[CrossRef]

Seabury, C.

Siong, C. F.

Tsai, F. S.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21(5), 304–306 (2009).
[CrossRef]

F. S. Tsai, S. H. Cho, Y. H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008).
[CrossRef] [PubMed]

Varahramyan, K.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

Vasko, B.

Vasko, J.

Wang, S. H.

Wang, W.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

Yan, H.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21(5), 304–306 (2009).
[CrossRef]

Yang, Q.

Yariv, A.

Yu, H. B.

H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17(6), 4782–4790 (2009).
[CrossRef] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng. 18(11), 115016 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18(10), 105017 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “Simple method for fabricating solid microlenses with different focal lengths,” IEEE Photon. Technol. Lett. 20(19), 1624–1626 (2008).
[CrossRef]

Zeng, X. F.

X. F. Zeng and H. R. Jiang, “Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding,” J. Microelectromech. Syst. 17(5), 1210–1217 (2008).
[CrossRef]

Zhang, D. Y.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43(4), 783–787 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive lens of transformable lens type,” Appl. Phys. Lett. 84(21), 4194–4196 (2004).
[CrossRef]

D. Y. Zhang, N. Justis, and Y. H. Lo, “Integrated fluidic adaptive zoom lens,” Opt. Lett. 29(24), 2855–2857 (2004).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
[CrossRef]

Zhou, G. Y.

H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17(6), 4782–4790 (2009).
[CrossRef] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18(10), 105017 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng. 18(11), 115016 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “Simple method for fabricating solid microlenses with different focal lengths,” IEEE Photon. Technol. Lett. 20(19), 1624–1626 (2008).
[CrossRef]

Zhu, L.

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
[CrossRef]

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive lens of transformable lens type,” Appl. Phys. Lett. 84(21), 4194–4196 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “Simple method for fabricating solid microlenses with different focal lengths,” IEEE Photon. Technol. Lett. 20(19), 1624–1626 (2008).
[CrossRef]

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21(5), 304–306 (2009).
[CrossRef]

J. Microelectromech. Syst. (1)

X. F. Zeng and H. R. Jiang, “Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding,” J. Microelectromech. Syst. 17(5), 1210–1217 (2008).
[CrossRef]

J. Micromech. Microeng. (3)

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng. 18(10), 105017 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, “A variable optical attenuator based on optofluidic technology,” J. Micromech. Microeng. 18(11), 115016 (2008).
[CrossRef]

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Other (1)

H. Gross, Handbook of Optical Systems. Weiheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of liquid-filled lens design. (a) The whole device, (b) The cross-section of device

Fig. 2
Fig. 2

ZEMAX simulation results. (a) Conventional design; (b) Optimized design

Fig. 3
Fig. 3

Simulation result of spherical aberration as a function of focal length. (Optimization point is chosen at 20mm focal length)

Fig. 4
Fig. 4

Simulation result of (a) astigmatism with y axis and (b) coma along y axis as a function of focal length.

Fig. 5
Fig. 5

Simulation result of spherical aberration as a function of focal length. (Optimization point is chosen at 24mm focal length)

Fig. 6
Fig. 6

Fabrication process of the presented lens

Fig. 7
Fig. 7

AFM measurement results of surface quality. (a) PMMA mold; (b) PDMS mother mold; (c) PDMS device

Fig. 8
Fig. 8

Measured aspherical surface contour

Fig. 9
Fig. 9

Tunable focal length as a function of applied pressure (*Inset is the fabricated lens)

Fig. 10
Fig. 10

Qualitative test of lens quality using lateral shearing interferometer. (a) Schematic of optical setup; Inteferograms captured at focal length (b) Equal to; (c) Shorter; (d) Longer than optimized point.

Tables (1)

Tables Icon

Table 1 Structural parameters of designed lens

Metrics