Abstract

In this paper, we comprehensively analyze the impact of four wave mixing (FWM) on the performance of incoherent multi-wavelength optical code-division multiple-access (MW-OCDMA) systems. We also consider many other interferences and noises, including multiple access interference, optical beating interference, and receiver noise, in the analysis. From the numerical results, we can find the power ranges of different MW-OCDMA systems, in which the impact of FWM is dominant and consequently results in an increase in the bit-error rate of the systems. We also find that the impact of FWM becomes more severe when the frequency spacing is small and/or dispersion-shifted fiber is used. In addition, we quantitatively discuss the impact of FWM on the number of supportable users and power penalty in the MW-OCDMA systems.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance Analysis of Spectral Amplitude Encoding OCDM Systems Over a Linear Dispersive Optical Channel

Ngoc T. Dang, Anh T. Pham, and Zixue Cheng
J. Opt. Commun. Netw. 1(6) 521-529 (2009)

Performance Analysis of Core-Multiplexed Spectral Amplitude Coded OCDMA PON

Ahmed E. A. Farghal
J. Opt. Commun. Netw. 8(9) 666-675 (2016)

Design, demonstration and analysis of a modified wavelength-correlating receiver for Incoherent OCDMA system

Heng Zhou, Kun Qiu, and Leyang Wang
Opt. Express 19(7) 6048-6063 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Commun. Mag. 40(9), 83–87 (2002).
    [Crossref]
  2. D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Lett. 5(4), 479–482 (1993).
    [Crossref]
  3. L. Tancevski and I. Andonovic, “Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,” J. Lightwave Technol. 14(12), 2636–2647 (1996).
    [Crossref]
  4. C.-S. Brès, Y.-K. Huang, I. Glesk, and P. R. Prucnal, “Scalable asynchronous incoherent optical CDMA,” J. Opt. Netw. 6(6), 599–615 (2007).
    [Crossref]
  5. E. D. J. Smith, P. T. Gough, and D. P. Taylor, “Noise limits of optical spectral-encoding CDMA systems,” Electron. Lett. 31(17), 1469–1470 (1995).
    [Crossref]
  6. E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun. 46(9), 1176–1185 (1998).
    [Crossref]
  7. L. Tancevski and L. A. Rusch, “Impact of the beat noise on the performance of 2-D optical CDMA systems,” IEEE Commun. Lett. 4(8), 264–266 (2000).
    [Crossref]
  8. Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, ““Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” IEEE/OSA,” J. Lightwave Technol. 19(9), 1274–1281 (2001).
    [Crossref]
  9. A. Pham, N. Miki, and H. Yashima, “Spectral-amplitude-encoding optical-code-division-multiplexing system with a heterodyne detection receiver for broadband optical multiple-access networks,” J. Opt. Netw. 4(10), 621–631 (2005).
    [Crossref]
  10. A. T. Pham and H. Yashima, “Performance enhancement of the 2-D wavelength-hopping/time-spreading synchronous OCDM system using a heterodyne detection receiver and PPM signaling,” J. Opt. Netw. 6(6), 789 (2007).
    [Crossref]
  11. T. Ngoc Dang, Anh T. Pham, and Zixue Cheng, “Impact of GVD on the performance of 2-D WH/TS OCDMA systems using heterodyne detection receiver,” IEICE Trans. on. Fundamentals E 92-A, 1182–1191 (2009).
  12. C. Zuo, W. Ma, H. Pu, and J. Lin, “The impact of group velocity on frequency-hopping optical code division multiple access system,” J. Lightwave Technol. 19(10), 1416–1419 (2001).
    [Crossref]
  13. G. P. Agrawal, Fiber-optic communication systems (A John Wiley and Sons, 2002).
  14. N. Shibata, K. Nosu, K. Iwashita, and Y. Azuma, “Transmission limitations due to fiber nonlinearities in optical FDM systems,” IEEE J. Sel. Areas Comm. 8(6), 1068–1077 (1990).
    [Crossref]
  15. K. Inoue and H. Toba, “Theoretical evaluation of error rate degradation due to fiber four-wave mixing in multichannel FSK heterodyne envelope detection transmission,” J. Lightwave Technol. 10(3), 361–366 (1992).
    [Crossref]
  16. K. Inoue, K. Nakanishi, K. Oda, and H. Toba, “Crosstalk and power penalty due to fiber four-wave mixing in multichannel transmissions,” J. Lightwave Technol. 12(8), 1423–1439 (1994).
    [Crossref]
  17. R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, and R. M. Derosier, “Four-photon mixing and high-speed WDM systems,” J. Lightwave Technol. 13(5), 841–849 (1995).
    [Crossref]
  18. T. Ngoc, Dang and Anh T. Pham, “FWM impairment in multi-wavelength optical code-division multiplexing systems” in Proc. of the Australasian Telecommunication Networks and Applications Conference, (2009).
  19. T. Ngoc, Dang and Anh T. Pham, “Impact of four-wave mixing on 2-D optical code-division multiplexing systems” in Proceedings of IEEE Photonics Society Summer Topicals’09, (Institute of Electrical and Electronics Engineers, New York, 2009), pp. 29–30.
  20. A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
    [Crossref]
  21. J. Magne, D.-P. Wei, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Experimental demonstration of frequency-encoded optical CDMA using superimposed fiber Bragg gratings,” in Proceeding of OSA Top. Mtg. on Bragg gratings, photosensitivity, and poling, (Québec, Canada 2003), pp. 1–6.
  22. H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, “Experimental study on time-spread/wavelength-hop optical code division multiplexing with group delay compensating en/decoder,” IEEE Photon. Technol. Lett. 16(1), 335–337 (2004).
    [Crossref]
  23. Recommendation G.694.1, Spectral grids for WDM applications: DWDM frequency grid, (ITU-T 2002).
  24. Recommendation G.652, Characteristics of a single-mode optical fibre and cable, (ITU-T 2005).
  25. Recommendation G.653, Characteristics of a dispersion-shifted single-mode optical fibre and cable, (ITU-T 2006).
  26. Recommendation G.655, Characteristics of a non-zero dispersion-shifted single-mode optical fibre and cable, (ITU-T 2006).

2009 (1)

T. Ngoc Dang, Anh T. Pham, and Zixue Cheng, “Impact of GVD on the performance of 2-D WH/TS OCDMA systems using heterodyne detection receiver,” IEICE Trans. on. Fundamentals E 92-A, 1182–1191 (2009).

2007 (2)

2005 (1)

2004 (1)

H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, “Experimental study on time-spread/wavelength-hop optical code division multiplexing with group delay compensating en/decoder,” IEEE Photon. Technol. Lett. 16(1), 335–337 (2004).
[Crossref]

2002 (1)

A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Commun. Mag. 40(9), 83–87 (2002).
[Crossref]

2001 (2)

2000 (1)

L. Tancevski and L. A. Rusch, “Impact of the beat noise on the performance of 2-D optical CDMA systems,” IEEE Commun. Lett. 4(8), 264–266 (2000).
[Crossref]

1999 (1)

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[Crossref]

1998 (1)

E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun. 46(9), 1176–1185 (1998).
[Crossref]

1996 (1)

L. Tancevski and I. Andonovic, “Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,” J. Lightwave Technol. 14(12), 2636–2647 (1996).
[Crossref]

1995 (2)

E. D. J. Smith, P. T. Gough, and D. P. Taylor, “Noise limits of optical spectral-encoding CDMA systems,” Electron. Lett. 31(17), 1469–1470 (1995).
[Crossref]

R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, and R. M. Derosier, “Four-photon mixing and high-speed WDM systems,” J. Lightwave Technol. 13(5), 841–849 (1995).
[Crossref]

1994 (1)

K. Inoue, K. Nakanishi, K. Oda, and H. Toba, “Crosstalk and power penalty due to fiber four-wave mixing in multichannel transmissions,” J. Lightwave Technol. 12(8), 1423–1439 (1994).
[Crossref]

1993 (1)

D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Lett. 5(4), 479–482 (1993).
[Crossref]

1992 (1)

K. Inoue and H. Toba, “Theoretical evaluation of error rate degradation due to fiber four-wave mixing in multichannel FSK heterodyne envelope detection transmission,” J. Lightwave Technol. 10(3), 361–366 (1992).
[Crossref]

1990 (1)

N. Shibata, K. Nosu, K. Iwashita, and Y. Azuma, “Transmission limitations due to fiber nonlinearities in optical FDM systems,” IEEE J. Sel. Areas Comm. 8(6), 1068–1077 (1990).
[Crossref]

Andonovic, I.

L. Tancevski and I. Andonovic, “Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,” J. Lightwave Technol. 14(12), 2636–2647 (1996).
[Crossref]

Azuma, Y.

N. Shibata, K. Nosu, K. Iwashita, and Y. Azuma, “Transmission limitations due to fiber nonlinearities in optical FDM systems,” IEEE J. Sel. Areas Comm. 8(6), 1068–1077 (1990).
[Crossref]

Blaikie, R. J.

E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun. 46(9), 1176–1185 (1998).
[Crossref]

Brès, C.-S.

Cheng, Zixue

T. Ngoc Dang, Anh T. Pham, and Zixue Cheng, “Impact of GVD on the performance of 2-D WH/TS OCDMA systems using heterodyne detection receiver,” IEICE Trans. on. Fundamentals E 92-A, 1182–1191 (2009).

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, and R. M. Derosier, “Four-photon mixing and high-speed WDM systems,” J. Lightwave Technol. 13(5), 841–849 (1995).
[Crossref]

Dang, T. Ngoc

T. Ngoc Dang, Anh T. Pham, and Zixue Cheng, “Impact of GVD on the performance of 2-D WH/TS OCDMA systems using heterodyne detection receiver,” IEICE Trans. on. Fundamentals E 92-A, 1182–1191 (2009).

Derosier, R. M.

R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, and R. M. Derosier, “Four-photon mixing and high-speed WDM systems,” J. Lightwave Technol. 13(5), 841–849 (1995).
[Crossref]

Forghieri, F.

R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, and R. M. Derosier, “Four-photon mixing and high-speed WDM systems,” J. Lightwave Technol. 13(5), 841–849 (1995).
[Crossref]

Ghafouri-Shiraz, H.

Glesk, I.

Gnauck, A. H.

R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, and R. M. Derosier, “Four-photon mixing and high-speed WDM systems,” J. Lightwave Technol. 13(5), 841–849 (1995).
[Crossref]

Gough, P. T.

E. D. J. Smith, P. T. Gough, and D. P. Taylor, “Noise limits of optical spectral-encoding CDMA systems,” Electron. Lett. 31(17), 1469–1470 (1995).
[Crossref]

Grunnet-Jepsen, A.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[Crossref]

Huang, Y.-K.

Inoue, K.

K. Inoue, K. Nakanishi, K. Oda, and H. Toba, “Crosstalk and power penalty due to fiber four-wave mixing in multichannel transmissions,” J. Lightwave Technol. 12(8), 1423–1439 (1994).
[Crossref]

K. Inoue and H. Toba, “Theoretical evaluation of error rate degradation due to fiber four-wave mixing in multichannel FSK heterodyne envelope detection transmission,” J. Lightwave Technol. 10(3), 361–366 (1992).
[Crossref]

Iwamura, H.

H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, “Experimental study on time-spread/wavelength-hop optical code division multiplexing with group delay compensating en/decoder,” IEEE Photon. Technol. Lett. 16(1), 335–337 (2004).
[Crossref]

Iwashita, K.

N. Shibata, K. Nosu, K. Iwashita, and Y. Azuma, “Transmission limitations due to fiber nonlinearities in optical FDM systems,” IEEE J. Sel. Areas Comm. 8(6), 1068–1077 (1990).
[Crossref]

Johnson, A. E.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[Crossref]

Kavehrad, M.

D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Lett. 5(4), 479–482 (1993).
[Crossref]

Lin, J.

Ma, W.

Maniloff, E. S.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[Crossref]

Miki, N.

Minato, N.

H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, “Experimental study on time-spread/wavelength-hop optical code division multiplexing with group delay compensating en/decoder,” IEEE Photon. Technol. Lett. 16(1), 335–337 (2004).
[Crossref]

Mossberg, T. W.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[Crossref]

Munroe, M. J.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[Crossref]

Nakanishi, K.

K. Inoue, K. Nakanishi, K. Oda, and H. Toba, “Crosstalk and power penalty due to fiber four-wave mixing in multichannel transmissions,” J. Lightwave Technol. 12(8), 1423–1439 (1994).
[Crossref]

Nosu, K.

N. Shibata, K. Nosu, K. Iwashita, and Y. Azuma, “Transmission limitations due to fiber nonlinearities in optical FDM systems,” IEEE J. Sel. Areas Comm. 8(6), 1068–1077 (1990).
[Crossref]

Oda, K.

K. Inoue, K. Nakanishi, K. Oda, and H. Toba, “Crosstalk and power penalty due to fiber four-wave mixing in multichannel transmissions,” J. Lightwave Technol. 12(8), 1423–1439 (1994).
[Crossref]

Oshiba, S.

H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, “Experimental study on time-spread/wavelength-hop optical code division multiplexing with group delay compensating en/decoder,” IEEE Photon. Technol. Lett. 16(1), 335–337 (2004).
[Crossref]

Pham, A.

Pham, A. T.

Pham, Anh T.

T. Ngoc Dang, Anh T. Pham, and Zixue Cheng, “Impact of GVD on the performance of 2-D WH/TS OCDMA systems using heterodyne detection receiver,” IEICE Trans. on. Fundamentals E 92-A, 1182–1191 (2009).

Prucnal, P. R.

Pu, H.

Rusch, L. A.

L. Tancevski and L. A. Rusch, “Impact of the beat noise on the performance of 2-D optical CDMA systems,” IEEE Commun. Lett. 4(8), 264–266 (2000).
[Crossref]

Sargent, E. H.

A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Commun. Mag. 40(9), 83–87 (2002).
[Crossref]

Shalaby, H. M. H.

Shibata, N.

N. Shibata, K. Nosu, K. Iwashita, and Y. Azuma, “Transmission limitations due to fiber nonlinearities in optical FDM systems,” IEEE J. Sel. Areas Comm. 8(6), 1068–1077 (1990).
[Crossref]

Smith, E. D. J.

E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun. 46(9), 1176–1185 (1998).
[Crossref]

E. D. J. Smith, P. T. Gough, and D. P. Taylor, “Noise limits of optical spectral-encoding CDMA systems,” Electron. Lett. 31(17), 1469–1470 (1995).
[Crossref]

Stok, A.

A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Commun. Mag. 40(9), 83–87 (2002).
[Crossref]

Sweetser, J. N.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[Crossref]

Tamai, H.

H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, “Experimental study on time-spread/wavelength-hop optical code division multiplexing with group delay compensating en/decoder,” IEEE Photon. Technol. Lett. 16(1), 335–337 (2004).
[Crossref]

Tancevski, L.

L. Tancevski and L. A. Rusch, “Impact of the beat noise on the performance of 2-D optical CDMA systems,” IEEE Commun. Lett. 4(8), 264–266 (2000).
[Crossref]

L. Tancevski and I. Andonovic, “Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,” J. Lightwave Technol. 14(12), 2636–2647 (1996).
[Crossref]

Taylor, D. P.

E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun. 46(9), 1176–1185 (1998).
[Crossref]

E. D. J. Smith, P. T. Gough, and D. P. Taylor, “Noise limits of optical spectral-encoding CDMA systems,” Electron. Lett. 31(17), 1469–1470 (1995).
[Crossref]

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, and R. M. Derosier, “Four-photon mixing and high-speed WDM systems,” J. Lightwave Technol. 13(5), 841–849 (1995).
[Crossref]

Toba, H.

K. Inoue, K. Nakanishi, K. Oda, and H. Toba, “Crosstalk and power penalty due to fiber four-wave mixing in multichannel transmissions,” J. Lightwave Technol. 12(8), 1423–1439 (1994).
[Crossref]

K. Inoue and H. Toba, “Theoretical evaluation of error rate degradation due to fiber four-wave mixing in multichannel FSK heterodyne envelope detection transmission,” J. Lightwave Technol. 10(3), 361–366 (1992).
[Crossref]

Wei, Z.

Yashima, H.

Zaccarin, D.

D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Lett. 5(4), 479–482 (1993).
[Crossref]

Zuo, C.

E (1)

T. Ngoc Dang, Anh T. Pham, and Zixue Cheng, “Impact of GVD on the performance of 2-D WH/TS OCDMA systems using heterodyne detection receiver,” IEICE Trans. on. Fundamentals E 92-A, 1182–1191 (2009).

Electron. Lett. (2)

E. D. J. Smith, P. T. Gough, and D. P. Taylor, “Noise limits of optical spectral-encoding CDMA systems,” Electron. Lett. 31(17), 1469–1470 (1995).
[Crossref]

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[Crossref]

IEEE Commun. Lett. (1)

L. Tancevski and L. A. Rusch, “Impact of the beat noise on the performance of 2-D optical CDMA systems,” IEEE Commun. Lett. 4(8), 264–266 (2000).
[Crossref]

IEEE Commun. Mag. (1)

A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Commun. Mag. 40(9), 83–87 (2002).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

N. Shibata, K. Nosu, K. Iwashita, and Y. Azuma, “Transmission limitations due to fiber nonlinearities in optical FDM systems,” IEEE J. Sel. Areas Comm. 8(6), 1068–1077 (1990).
[Crossref]

IEEE Photon. Technol. Lett. (2)

D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Lett. 5(4), 479–482 (1993).
[Crossref]

H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, “Experimental study on time-spread/wavelength-hop optical code division multiplexing with group delay compensating en/decoder,” IEEE Photon. Technol. Lett. 16(1), 335–337 (2004).
[Crossref]

IEEE Trans. Commun. (1)

E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun. 46(9), 1176–1185 (1998).
[Crossref]

J. Lightwave Technol. (6)

L. Tancevski and I. Andonovic, “Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,” J. Lightwave Technol. 14(12), 2636–2647 (1996).
[Crossref]

K. Inoue and H. Toba, “Theoretical evaluation of error rate degradation due to fiber four-wave mixing in multichannel FSK heterodyne envelope detection transmission,” J. Lightwave Technol. 10(3), 361–366 (1992).
[Crossref]

K. Inoue, K. Nakanishi, K. Oda, and H. Toba, “Crosstalk and power penalty due to fiber four-wave mixing in multichannel transmissions,” J. Lightwave Technol. 12(8), 1423–1439 (1994).
[Crossref]

R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, and R. M. Derosier, “Four-photon mixing and high-speed WDM systems,” J. Lightwave Technol. 13(5), 841–849 (1995).
[Crossref]

Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, ““Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” IEEE/OSA,” J. Lightwave Technol. 19(9), 1274–1281 (2001).
[Crossref]

C. Zuo, W. Ma, H. Pu, and J. Lin, “The impact of group velocity on frequency-hopping optical code division multiple access system,” J. Lightwave Technol. 19(10), 1416–1419 (2001).
[Crossref]

J. Opt. Netw. (3)

Other (8)

T. Ngoc, Dang and Anh T. Pham, “FWM impairment in multi-wavelength optical code-division multiplexing systems” in Proc. of the Australasian Telecommunication Networks and Applications Conference, (2009).

T. Ngoc, Dang and Anh T. Pham, “Impact of four-wave mixing on 2-D optical code-division multiplexing systems” in Proceedings of IEEE Photonics Society Summer Topicals’09, (Institute of Electrical and Electronics Engineers, New York, 2009), pp. 29–30.

Recommendation G.694.1, Spectral grids for WDM applications: DWDM frequency grid, (ITU-T 2002).

Recommendation G.652, Characteristics of a single-mode optical fibre and cable, (ITU-T 2005).

Recommendation G.653, Characteristics of a dispersion-shifted single-mode optical fibre and cable, (ITU-T 2006).

Recommendation G.655, Characteristics of a non-zero dispersion-shifted single-mode optical fibre and cable, (ITU-T 2006).

G. P. Agrawal, Fiber-optic communication systems (A John Wiley and Sons, 2002).

J. Magne, D.-P. Wei, S. Ayotte, L. A. Rusch, and S. LaRochelle, “Experimental demonstration of frequency-encoded optical CDMA using superimposed fiber Bragg gratings,” in Proceeding of OSA Top. Mtg. on Bragg gratings, photosensitivity, and poling, (Québec, Canada 2003), pp. 1–6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Impact of FWM in MW-OCDMA systems

Fig. 2
Fig. 2

Schematic diagram of a MW-OCDMA system.

Fig. 3
Fig. 3

Encoded signal and autocorrelation in the case of (a) 1-D spectral amplitude encoding and (b) 2-D encoding.

Fig. 4
Fig. 4

Receiver structure of a SAE/OCDMA system.

Fig. 5
Fig. 5

BER versus the transmitted power per chip with different types of fibers when K = 32 users, L = 30 km, Δf = 25 GHz, and MQC code set is used.

Fig. 6
Fig. 6

BER versus the transmitted power per chip with different frequency spacing when K = 32 users and L = 30 km. MQC code set and SMF are used.

Fig. 7
Fig. 7

Power penalty versus the transmitted power per chip in the case of using SMF and MQC code set when K = 32 users and L = 30 km.

Fig. 8
Fig. 8

Power penalty versus the transmitted power per chip when L = 30 km, Δf = 25 GHz, and SMF is used.

Fig. 9
Fig. 9

BER versus the transmitted power per chip in the case of using SMF when K = 32 users, L = 60 km, and Δf = 25 GHz.

Fig. 10
Fig. 10

Power penalty versus the number of users in the case of using SMF when L = 60 km and Δf = 25 GHz.

Tables (3)

Tables Icon

Table 1 Frequency combinations caused by FWM in a 4-equally-spaced frequency system (N = 4)

Tables Icon

Table 2 System parameters and constants

Tables Icon

Table 3 Optical fiber parameters

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Ppqr=ηF(dFγL)2(npPc)(nqPc)(nrPc)exp(αL),
ηF=|1exp[(α+jΔk)L](α+jΔk)L|2.
Δkβ2(ωpωr)(ωqωr),
PiF=pqrPpqr,
Ib(SAE)=(bwPsdesiredsignal+i=1wPiFi=w+1NξPiFFWM light),
iOBI2(SAE)=2Beτc2[Ps2i=1w(bki+(ki2))MAI-induced OBI+Psi=1w(b+ki)PiFFWM-induced OBI+(ξPs)2i=w+1N(ki2)MAI-induced OBI+ξ2Psi=w+1NkiPiFFWM-induced OBI],
inb2=iOBIb2(SAE)+isb2+ith2.
BER=12[Q(I1IDin1)+Q(IDI0in0)],
Q(x)=12πxexp(y2/2)dy.
BER=Q(I1I0in1+in0).
Ib(2D)=(bwPsdesiredsignal+i=1wj=1kiPsMAI signal+i=1wPiFFWM light).
iOBIb2(2D)=2Beτc2[Ps2i=1w(bki+(ki2))MAI-induced OBI+Psi=1w(b+ki)PiFFWM-induced OBI].
BER=k=1K1(K1k)2(K1)j=1k(kj)pMAIj(1pMAI)kjQ(I1I0in1+in0).
μλ=1(phps){(ph1ps1)(ps1)(ps2)+(ph2)ph2+(ph1ps)ps(ps1)ph2}

Metrics