Abstract

A theoretical description for a single quantum-dot emitter in a microcavity is developed. We analyze for increasing steady-state pump rate the transition from the strong-coupling regime with photon antibunching to the weak-coupling regime with coherent emission. It is demonstrated how Coulomb interaction of excited carriers and excitation-induced dephasing can strongly modify the emission properties. Our theoretical investigations are based on a direct solution of the Liouville-von Neumann equation for the coupled carrier-photon system. We include multiple carrier excitations in the quantum dot, their Coulomb interaction, as well as excitation-induced dephasing and screening. Similarities and differences to atomic systems are discussed and results in the regime of recent experiments are interpreted.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Meschede, H. Walter, and G. Muller, "One-atom maser," Phys. Rev. Lett. 54, 551-554 (1985).
    [CrossRef] [PubMed]
  2. K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, "Microlaser: A laser with one atome in an optical resonator," Phys. Rev. Lett. 73, 3375-3378 (1994).
    [CrossRef] [PubMed]
  3. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, "Experimental realization of a one-atom laser in the regime of strong coupling," Nature 425, 268-271 (2003).
    [CrossRef] [PubMed]
  4. H. Carmichael and L. A. Orozco, "Quantum optics: Single atom lases orderly light," Nature 425, 246-247 (2003).
    [CrossRef] [PubMed]
  5. O. Benson and Y. Yamamoto, "Master-equation model of a single-quantum-dot microsphere laser," Phys. Rev. A 59, 4756-4763 (1999).
    [CrossRef]
  6. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science,  290, 2282-2285 (2000).
    [CrossRef] [PubMed]
  7. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
    [CrossRef] [PubMed]
  8. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
    [CrossRef] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
    [CrossRef] [PubMed]
  10. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
    [CrossRef]
  11. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. M¨unch, A. L¨offler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
    [CrossRef]
  12. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
    [CrossRef] [PubMed]
  13. S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. L¨offler, A. Forchel, F. Jahnke, and P. Michler, "Photon statistics of semiconductor microcavity lasers," Phys. Rev. Lett. 98, 043906 (2007).
    [CrossRef] [PubMed]
  14. Z. G. Xie, S. Gotzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007).
    [CrossRef] [PubMed]
  15. S. Reitzenstein, C. B¨ockler, A. Bazhenov, A. Gorbunov, A. Loffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, "Single quantum dot controlled lasing effects inhigh-q micropillar cavities," Opt. Express 16, 4848-4857 (2008).
    [CrossRef] [PubMed]
  16. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, "Photonic crystal nanocavity laser with a single quantum dot gain," Opt. Express 17, 15975-15982 (2009).
    [CrossRef] [PubMed]
  17. Y. Mu and C. M. Savage, "One-atom lasers," Phys. Rev. A 46, 5944-5954 (1992).
    [CrossRef] [PubMed]
  18. A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, "Electronic structure and magneto-optics of self-assembled quantum dots," Phys. Rev. B 54, 5604-5608 (1996).
    [CrossRef]
  19. H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, "Carrier relaxation dynamics in self-assembled semiconductor quantum dots," Phys. Rev. B 80, 235319 (2009).
    [CrossRef]
  20. P. Hawrylak, "Excitonic artificial atoms: Engineering optical properties of quantum dots," Phys. Rev. B 60, 5597-5608 (1999).
    [CrossRef]
  21. N. Baer, P. Gartner, and F. Jahnke, "Coulomb effects in semiconductor quantum dots," Eur. Phys. J. B 42, 231-237 (2004).
    [CrossRef]
  22. S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, "Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy," Nat. Photonics 3, 724-728 (2009).
    [CrossRef]
  23. E. Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, "Two-photon lasing by a single quantum dot in a high- q microcavity," Phys. Rev. B 81, 035302 (2010).
    [CrossRef]
  24. H. J. Carmichael, Statistical Methods in Quantum Optics 1, (Springer, Berlin, 1998).
  25. T. Pellizzari and H. Ritsch, "Photon statistics of the three-level one-atom laser," J. Modern Opt. 41, 609-623 (1994).
    [CrossRef]
  26. A. D. Boozer, A. Boca, J. R. Buck, J. McKeever, and H. J. Kimble, "Comparison of theory and experiment for a one-atom laser in a regime of strong coupling," Phys. Rev. A 70, 023814 (2004).
    [CrossRef]
  27. J. I. Perea, D. Porras, and C. Tejedor, "Dynamics of the excitations of a quantum dot in a microcavity," Phys. Rev. B 70, 115304 (2004).
    [CrossRef]
  28. P. R. Rice and H. J. Carmichael, "Photon statistics of cavity-QED lasers," Phys. Rev. A 50, 4318-4329 (1994).
    [CrossRef] [PubMed]
  29. W. A. Hugel, M. F. Heinrich, and M. Wegener, "Dephasing due to carrier-carrier scattering in 2d," Phys. Stat. Sol.(b) 221, 473-476 (2000).
    [CrossRef]
  30. H. Haug, "Coulomb quantum kinetics for semiconductor femtosecond spectroscopy," Phys. Stat. Sol.(b) 221, 179-188 (2000).
    [CrossRef]
  31. M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, "Excitation dependence of the homogeneous linewidths in quantum dots," Phys. Stat. Sol. (c)  3, 2393-2396 (2006).
    [CrossRef]
  32. M. Bayer and A. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.6Ga0.4As/GaAs self-assembled quantum dots," Phys. Rev. B 65, 041308(R) (2002).
    [CrossRef]
  33. M. Lorke, T. R. Nielsen, J. Seebeck, P. Gartner, and F. Jahnke, "Influence of carrier-carrier and electron-phonon correlations on optical absorption and gain in quantum-dot systems," Phys. Rev. B 73, 085324 (2006).
    [CrossRef]

2010 (1)

E. Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, "Two-photon lasing by a single quantum dot in a high- q microcavity," Phys. Rev. B 81, 035302 (2010).
[CrossRef]

2009 (3)

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, "Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy," Nat. Photonics 3, 724-728 (2009).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, "Photonic crystal nanocavity laser with a single quantum dot gain," Opt. Express 17, 15975-15982 (2009).
[CrossRef] [PubMed]

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, "Carrier relaxation dynamics in self-assembled semiconductor quantum dots," Phys. Rev. B 80, 235319 (2009).
[CrossRef]

2008 (1)

2007 (2)

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. L¨offler, A. Forchel, F. Jahnke, and P. Michler, "Photon statistics of semiconductor microcavity lasers," Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

Z. G. Xie, S. Gotzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

2006 (4)

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. M¨unch, A. L¨offler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, "Excitation dependence of the homogeneous linewidths in quantum dots," Phys. Stat. Sol. (c)  3, 2393-2396 (2006).
[CrossRef]

M. Lorke, T. R. Nielsen, J. Seebeck, P. Gartner, and F. Jahnke, "Influence of carrier-carrier and electron-phonon correlations on optical absorption and gain in quantum-dot systems," Phys. Rev. B 73, 085324 (2006).
[CrossRef]

2005 (1)

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

2004 (5)

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

N. Baer, P. Gartner, and F. Jahnke, "Coulomb effects in semiconductor quantum dots," Eur. Phys. J. B 42, 231-237 (2004).
[CrossRef]

A. D. Boozer, A. Boca, J. R. Buck, J. McKeever, and H. J. Kimble, "Comparison of theory and experiment for a one-atom laser in a regime of strong coupling," Phys. Rev. A 70, 023814 (2004).
[CrossRef]

J. I. Perea, D. Porras, and C. Tejedor, "Dynamics of the excitations of a quantum dot in a microcavity," Phys. Rev. B 70, 115304 (2004).
[CrossRef]

2003 (2)

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, "Experimental realization of a one-atom laser in the regime of strong coupling," Nature 425, 268-271 (2003).
[CrossRef] [PubMed]

H. Carmichael and L. A. Orozco, "Quantum optics: Single atom lases orderly light," Nature 425, 246-247 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

2000 (3)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science,  290, 2282-2285 (2000).
[CrossRef] [PubMed]

W. A. Hugel, M. F. Heinrich, and M. Wegener, "Dephasing due to carrier-carrier scattering in 2d," Phys. Stat. Sol.(b) 221, 473-476 (2000).
[CrossRef]

H. Haug, "Coulomb quantum kinetics for semiconductor femtosecond spectroscopy," Phys. Stat. Sol.(b) 221, 179-188 (2000).
[CrossRef]

1999 (2)

O. Benson and Y. Yamamoto, "Master-equation model of a single-quantum-dot microsphere laser," Phys. Rev. A 59, 4756-4763 (1999).
[CrossRef]

P. Hawrylak, "Excitonic artificial atoms: Engineering optical properties of quantum dots," Phys. Rev. B 60, 5597-5608 (1999).
[CrossRef]

1996 (1)

A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, "Electronic structure and magneto-optics of self-assembled quantum dots," Phys. Rev. B 54, 5604-5608 (1996).
[CrossRef]

1994 (3)

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, "Microlaser: A laser with one atome in an optical resonator," Phys. Rev. Lett. 73, 3375-3378 (1994).
[CrossRef] [PubMed]

P. R. Rice and H. J. Carmichael, "Photon statistics of cavity-QED lasers," Phys. Rev. A 50, 4318-4329 (1994).
[CrossRef] [PubMed]

T. Pellizzari and H. Ritsch, "Photon statistics of the three-level one-atom laser," J. Modern Opt. 41, 609-623 (1994).
[CrossRef]

1992 (1)

Y. Mu and C. M. Savage, "One-atom lasers," Phys. Rev. A 46, 5944-5954 (1992).
[CrossRef] [PubMed]

1985 (1)

D. Meschede, H. Walter, and G. Muller, "One-atom maser," Phys. Rev. Lett. 54, 551-554 (1985).
[CrossRef] [PubMed]

An, K.

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, "Microlaser: A laser with one atome in an optical resonator," Phys. Rev. Lett. 73, 3375-3378 (1994).
[CrossRef] [PubMed]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Arakawa, Y.

Ates, S.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, "Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy," Nat. Photonics 3, 724-728 (2009).
[CrossRef]

B¨ockler, C.

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Baer, N.

N. Baer, P. Gartner, and F. Jahnke, "Coulomb effects in semiconductor quantum dots," Eur. Phys. J. B 42, 231-237 (2004).
[CrossRef]

Bayer, M.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, "Carrier relaxation dynamics in self-assembled semiconductor quantum dots," Phys. Rev. B 80, 235319 (2009).
[CrossRef]

Bazhenov, A.

S. Reitzenstein, C. B¨ockler, A. Bazhenov, A. Gorbunov, A. Loffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, "Single quantum dot controlled lasing effects inhigh-q micropillar cavities," Opt. Express 16, 4848-4857 (2008).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. M¨unch, A. L¨offler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science,  290, 2282-2285 (2000).
[CrossRef] [PubMed]

Benson, O.

O. Benson and Y. Yamamoto, "Master-equation model of a single-quantum-dot microsphere laser," Phys. Rev. A 59, 4756-4763 (1999).
[CrossRef]

Boca, A.

A. D. Boozer, A. Boca, J. R. Buck, J. McKeever, and H. J. Kimble, "Comparison of theory and experiment for a one-atom laser in a regime of strong coupling," Phys. Rev. A 70, 023814 (2004).
[CrossRef]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, "Experimental realization of a one-atom laser in the regime of strong coupling," Nature 425, 268-271 (2003).
[CrossRef] [PubMed]

Boozer, A. D.

A. D. Boozer, A. Boca, J. R. Buck, J. McKeever, and H. J. Kimble, "Comparison of theory and experiment for a one-atom laser in a regime of strong coupling," Phys. Rev. A 70, 023814 (2004).
[CrossRef]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, "Experimental realization of a one-atom laser in the regime of strong coupling," Nature 425, 268-271 (2003).
[CrossRef] [PubMed]

Brouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Buck, J. R.

A. D. Boozer, A. Boca, J. R. Buck, J. McKeever, and H. J. Kimble, "Comparison of theory and experiment for a one-atom laser in a regime of strong coupling," Phys. Rev. A 70, 023814 (2004).
[CrossRef]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, "Experimental realization of a one-atom laser in the regime of strong coupling," Nature 425, 268-271 (2003).
[CrossRef] [PubMed]

Cao, H.

Z. G. Xie, S. Gotzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

Carmichael, H.

H. Carmichael and L. A. Orozco, "Quantum optics: Single atom lases orderly light," Nature 425, 246-247 (2003).
[CrossRef] [PubMed]

Carmichael, H. J.

P. R. Rice and H. J. Carmichael, "Photon statistics of cavity-QED lasers," Phys. Rev. A 50, 4318-4329 (1994).
[CrossRef] [PubMed]

Childs, J. J.

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, "Microlaser: A laser with one atome in an optical resonator," Phys. Rev. Lett. 73, 3375-3378 (1994).
[CrossRef] [PubMed]

Choi, Y.-S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Christenson, C.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Dasari, R. R.

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, "Microlaser: A laser with one atome in an optical resonator," Phys. Rev. Lett. 73, 3375-3378 (1994).
[CrossRef] [PubMed]

Deppe, D. G.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Fafard, S.

A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, "Electronic structure and magneto-optics of self-assembled quantum dots," Phys. Rev. B 54, 5604-5608 (1996).
[CrossRef]

Fang, W.

Z. G. Xie, S. Gotzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

Feld, M. S.

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, "Microlaser: A laser with one atome in an optical resonator," Phys. Rev. Lett. 73, 3375-3378 (1994).
[CrossRef] [PubMed]

Forchel, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, "Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy," Nat. Photonics 3, 724-728 (2009).
[CrossRef]

S. Reitzenstein, C. B¨ockler, A. Bazhenov, A. Gorbunov, A. Loffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, "Single quantum dot controlled lasing effects inhigh-q micropillar cavities," Opt. Express 16, 4848-4857 (2008).
[CrossRef] [PubMed]

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. L¨offler, A. Forchel, F. Jahnke, and P. Michler, "Photon statistics of semiconductor microcavity lasers," Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. M¨unch, A. L¨offler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Gartner, P.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, "Carrier relaxation dynamics in self-assembled semiconductor quantum dots," Phys. Rev. B 80, 235319 (2009).
[CrossRef]

M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, "Excitation dependence of the homogeneous linewidths in quantum dots," Phys. Stat. Sol. (c)  3, 2393-2396 (2006).
[CrossRef]

M. Lorke, T. R. Nielsen, J. Seebeck, P. Gartner, and F. Jahnke, "Influence of carrier-carrier and electron-phonon correlations on optical absorption and gain in quantum-dot systems," Phys. Rev. B 73, 085324 (2006).
[CrossRef]

N. Baer, P. Gartner, and F. Jahnke, "Coulomb effects in semiconductor quantum dots," Eur. Phys. J. B 42, 231-237 (2004).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Gibbs, H.M.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Gies, C.

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. L¨offler, A. Forchel, F. Jahnke, and P. Michler, "Photon statistics of semiconductor microcavity lasers," Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

Gonzalez-Tudela, A.

E. Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, "Two-photon lasing by a single quantum dot in a high- q microcavity," Phys. Rev. B 81, 035302 (2010).
[CrossRef]

Gorbunov, A.

S. Reitzenstein, C. B¨ockler, A. Bazhenov, A. Gorbunov, A. Loffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, "Single quantum dot controlled lasing effects inhigh-q micropillar cavities," Opt. Express 16, 4848-4857 (2008).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. M¨unch, A. L¨offler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

Gotzinger, S.

Z. G. Xie, S. Gotzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

Haug, H.

H. Haug, "Coulomb quantum kinetics for semiconductor femtosecond spectroscopy," Phys. Stat. Sol.(b) 221, 179-188 (2000).
[CrossRef]

Hawrylak, P.

P. Hawrylak, "Excitonic artificial atoms: Engineering optical properties of quantum dots," Phys. Rev. B 60, 5597-5608 (1999).
[CrossRef]

A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, "Electronic structure and magneto-optics of self-assembled quantum dots," Phys. Rev. B 54, 5604-5608 (1996).
[CrossRef]

Heinrich, M. F.

W. A. Hugel, M. F. Heinrich, and M. Wegener, "Dephasing due to carrier-carrier scattering in 2d," Phys. Stat. Sol.(b) 221, 473-476 (2000).
[CrossRef]

Hendrickson, J.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Hofling, S.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, "Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy," Nat. Photonics 3, 724-728 (2009).
[CrossRef]

Hofmann, C.

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. L¨offler, A. Forchel, F. Jahnke, and P. Michler, "Photon statistics of semiconductor microcavity lasers," Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. M¨unch, A. L¨offler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science,  290, 2282-2285 (2000).
[CrossRef] [PubMed]

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Hugel, W. A.

W. A. Hugel, M. F. Heinrich, and M. Wegener, "Dephasing due to carrier-carrier scattering in 2d," Phys. Stat. Sol.(b) 221, 473-476 (2000).
[CrossRef]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science,  290, 2282-2285 (2000).
[CrossRef] [PubMed]

Iwamoto, S.

Jacak, L.

A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, "Electronic structure and magneto-optics of self-assembled quantum dots," Phys. Rev. B 54, 5604-5608 (1996).
[CrossRef]

Jahnke, F.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, "Carrier relaxation dynamics in self-assembled semiconductor quantum dots," Phys. Rev. B 80, 235319 (2009).
[CrossRef]

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. L¨offler, A. Forchel, F. Jahnke, and P. Michler, "Photon statistics of semiconductor microcavity lasers," Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

M. Lorke, T. R. Nielsen, J. Seebeck, P. Gartner, and F. Jahnke, "Influence of carrier-carrier and electron-phonon correlations on optical absorption and gain in quantum-dot systems," Phys. Rev. B 73, 085324 (2006).
[CrossRef]

M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, "Excitation dependence of the homogeneous linewidths in quantum dots," Phys. Stat. Sol. (c)  3, 2393-2396 (2006).
[CrossRef]

N. Baer, P. Gartner, and F. Jahnke, "Coulomb effects in semiconductor quantum dots," Eur. Phys. J. B 42, 231-237 (2004).
[CrossRef]

Kamp, M.

S. Reitzenstein, C. B¨ockler, A. Bazhenov, A. Gorbunov, A. Loffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, "Single quantum dot controlled lasing effects inhigh-q micropillar cavities," Opt. Express 16, 4848-4857 (2008).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. M¨unch, A. L¨offler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Khitrova, G.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Kimble, H. J.

A. D. Boozer, A. Boca, J. R. Buck, J. McKeever, and H. J. Kimble, "Comparison of theory and experiment for a one-atom laser in a regime of strong coupling," Phys. Rev. A 70, 023814 (2004).
[CrossRef]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, "Experimental realization of a one-atom laser in the regime of strong coupling," Nature 425, 268-271 (2003).
[CrossRef] [PubMed]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science,  290, 2282-2285 (2000).
[CrossRef] [PubMed]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

S. Reitzenstein, C. B¨ockler, A. Bazhenov, A. Gorbunov, A. Loffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, "Single quantum dot controlled lasing effects inhigh-q micropillar cavities," Opt. Express 16, 4848-4857 (2008).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. M¨unch, A. L¨offler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Kumagai, N.

Kurtze, H.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, "Carrier relaxation dynamics in self-assembled semiconductor quantum dots," Phys. Rev. B 80, 235319 (2009).
[CrossRef]

L¨offler, A.

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. L¨offler, A. Forchel, F. Jahnke, and P. Michler, "Photon statistics of semiconductor microcavity lasers," Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. M¨unch, A. L¨offler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

Lam, D.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Laussy, F. P.

E. Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, "Two-photon lasing by a single quantum dot in a high- q microcavity," Phys. Rev. B 81, 035302 (2010).
[CrossRef]

Loffler, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, "Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy," Nat. Photonics 3, 724-728 (2009).
[CrossRef]

S. Reitzenstein, C. B¨ockler, A. Bazhenov, A. Gorbunov, A. Loffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, "Single quantum dot controlled lasing effects inhigh-q micropillar cavities," Opt. Express 16, 4848-4857 (2008).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Lorke, M.

M. Lorke, T. R. Nielsen, J. Seebeck, P. Gartner, and F. Jahnke, "Influence of carrier-carrier and electron-phonon correlations on optical absorption and gain in quantum-dot systems," Phys. Rev. B 73, 085324 (2006).
[CrossRef]

M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, "Excitation dependence of the homogeneous linewidths in quantum dots," Phys. Stat. Sol. (c)  3, 2393-2396 (2006).
[CrossRef]

M¨unch, S.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. M¨unch, A. L¨offler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

McKeever, J.

A. D. Boozer, A. Boca, J. R. Buck, J. McKeever, and H. J. Kimble, "Comparison of theory and experiment for a one-atom laser in a regime of strong coupling," Phys. Rev. A 70, 023814 (2004).
[CrossRef]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, "Experimental realization of a one-atom laser in the regime of strong coupling," Nature 425, 268-271 (2003).
[CrossRef] [PubMed]

Meschede, D.

D. Meschede, H. Walter, and G. Muller, "One-atom maser," Phys. Rev. Lett. 54, 551-554 (1985).
[CrossRef] [PubMed]

Michler, P.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, "Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy," Nat. Photonics 3, 724-728 (2009).
[CrossRef]

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. L¨offler, A. Forchel, F. Jahnke, and P. Michler, "Photon statistics of semiconductor microcavity lasers," Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science,  290, 2282-2285 (2000).
[CrossRef] [PubMed]

Morigi, G.

E. Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, "Two-photon lasing by a single quantum dot in a high- q microcavity," Phys. Rev. B 81, 035302 (2010).
[CrossRef]

Mosor, S.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Mu, Y.

Y. Mu and C. M. Savage, "One-atom lasers," Phys. Rev. A 46, 5944-5954 (1992).
[CrossRef] [PubMed]

Muller, G.

D. Meschede, H. Walter, and G. Muller, "One-atom maser," Phys. Rev. Lett. 54, 551-554 (1985).
[CrossRef] [PubMed]

Nielsen, T. R.

M. Lorke, T. R. Nielsen, J. Seebeck, P. Gartner, and F. Jahnke, "Influence of carrier-carrier and electron-phonon correlations on optical absorption and gain in quantum-dot systems," Phys. Rev. B 73, 085324 (2006).
[CrossRef]

M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, "Excitation dependence of the homogeneous linewidths in quantum dots," Phys. Stat. Sol. (c)  3, 2393-2396 (2006).
[CrossRef]

Nomura, M.

Orozco, L. A.

H. Carmichael and L. A. Orozco, "Quantum optics: Single atom lases orderly light," Nature 425, 246-247 (2003).
[CrossRef] [PubMed]

Ota, Y.

Pellizzari, T.

T. Pellizzari and H. Ritsch, "Photon statistics of the three-level one-atom laser," J. Modern Opt. 41, 609-623 (1994).
[CrossRef]

Pelton, M.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Perea, J. I.

J. I. Perea, D. Porras, and C. Tejedor, "Dynamics of the excitations of a quantum dot in a microcavity," Phys. Rev. B 70, 115304 (2004).
[CrossRef]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Petroff, P.M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science,  290, 2282-2285 (2000).
[CrossRef] [PubMed]

Plant, J.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Porras, D.

J. I. Perea, D. Porras, and C. Tejedor, "Dynamics of the excitations of a quantum dot in a microcavity," Phys. Rev. B 70, 115304 (2004).
[CrossRef]

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Reithmaier, J. P.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. M¨unch, A. L¨offler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, "Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy," Nat. Photonics 3, 724-728 (2009).
[CrossRef]

S. Reitzenstein, C. B¨ockler, A. Bazhenov, A. Gorbunov, A. Loffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, "Single quantum dot controlled lasing effects inhigh-q micropillar cavities," Opt. Express 16, 4848-4857 (2008).
[CrossRef] [PubMed]

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. L¨offler, A. Forchel, F. Jahnke, and P. Michler, "Photon statistics of semiconductor microcavity lasers," Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. M¨unch, A. L¨offler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Reuter, D.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, "Carrier relaxation dynamics in self-assembled semiconductor quantum dots," Phys. Rev. B 80, 235319 (2009).
[CrossRef]

Rice, P. R.

P. R. Rice and H. J. Carmichael, "Photon statistics of cavity-QED lasers," Phys. Rev. A 50, 4318-4329 (1994).
[CrossRef] [PubMed]

Richards, B. C.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Ritsch, H.

T. Pellizzari and H. Ritsch, "Photon statistics of the three-level one-atom laser," J. Modern Opt. 41, 609-623 (1994).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Santori, C.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Savage, C. M.

Y. Mu and C. M. Savage, "One-atom lasers," Phys. Rev. A 46, 5944-5954 (1992).
[CrossRef] [PubMed]

Scherer, A.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science,  290, 2282-2285 (2000).
[CrossRef] [PubMed]

Seebeck, J.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, "Carrier relaxation dynamics in self-assembled semiconductor quantum dots," Phys. Rev. B 80, 235319 (2009).
[CrossRef]

M. Lorke, T. R. Nielsen, J. Seebeck, P. Gartner, and F. Jahnke, "Influence of carrier-carrier and electron-phonon correlations on optical absorption and gain in quantum-dot systems," Phys. Rev. B 73, 085324 (2006).
[CrossRef]

M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, "Excitation dependence of the homogeneous linewidths in quantum dots," Phys. Stat. Sol. (c)  3, 2393-2396 (2006).
[CrossRef]

Sek, G.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Shchekin, O. B.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Solomon, G. S.

Z. G. Xie, S. Gotzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Sweet, J.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

Tejedor, C.

E. Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, "Two-photon lasing by a single quantum dot in a high- q microcavity," Phys. Rev. B 81, 035302 (2010).
[CrossRef]

J. I. Perea, D. Porras, and C. Tejedor, "Dynamics of the excitations of a quantum dot in a microcavity," Phys. Rev. B 70, 115304 (2004).
[CrossRef]

Ulhaq, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, "Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy," Nat. Photonics 3, 724-728 (2009).
[CrossRef]

Ulrich, S. M.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, "Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy," Nat. Photonics 3, 724-728 (2009).
[CrossRef]

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. L¨offler, A. Forchel, F. Jahnke, and P. Michler, "Photon statistics of semiconductor microcavity lasers," Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

Valle, E.

E. Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, "Two-photon lasing by a single quantum dot in a high- q microcavity," Phys. Rev. B 81, 035302 (2010).
[CrossRef]

Vuckovic, J.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Walter, H.

D. Meschede, H. Walter, and G. Muller, "One-atom maser," Phys. Rev. Lett. 54, 551-554 (1985).
[CrossRef] [PubMed]

Wegener, M.

W. A. Hugel, M. F. Heinrich, and M. Wegener, "Dephasing due to carrier-carrier scattering in 2d," Phys. Stat. Sol.(b) 221, 473-476 (2000).
[CrossRef]

Wieck, A. D.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, "Carrier relaxation dynamics in self-assembled semiconductor quantum dots," Phys. Rev. B 80, 235319 (2009).
[CrossRef]

Wiersig, J.

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. L¨offler, A. Forchel, F. Jahnke, and P. Michler, "Photon statistics of semiconductor microcavity lasers," Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

Wojs, A.

A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, "Electronic structure and magneto-optics of self-assembled quantum dots," Phys. Rev. B 54, 5604-5608 (1996).
[CrossRef]

Xie, Z. G.

Z. G. Xie, S. Gotzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

Yakovlev, D. R.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, "Carrier relaxation dynamics in self-assembled semiconductor quantum dots," Phys. Rev. B 80, 235319 (2009).
[CrossRef]

Yamamoto, Y.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

O. Benson and Y. Yamamoto, "Master-equation model of a single-quantum-dot microsphere laser," Phys. Rev. A 59, 4756-4763 (1999).
[CrossRef]

Yoshie, T.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Zhang, B.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science,  290, 2282-2285 (2000).
[CrossRef] [PubMed]

Zippilli, S.

E. Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, "Two-photon lasing by a single quantum dot in a high- q microcavity," Phys. Rev. B 81, 035302 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. M¨unch, A. L¨offler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, "Lasing in high-q quantum-dot micropillar cavities," Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

Eur. Phys. J. B (1)

N. Baer, P. Gartner, and F. Jahnke, "Coulomb effects in semiconductor quantum dots," Eur. Phys. J. B 42, 231-237 (2004).
[CrossRef]

J. Modern Opt. (1)

T. Pellizzari and H. Ritsch, "Photon statistics of the three-level one-atom laser," J. Modern Opt. 41, 609-623 (1994).
[CrossRef]

Nat. Photonics (1)

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Loffler, S. Hofling, A. Forchel, and P. Michler, "Non-resonant dotcavity coupling and its potential for resonant single-quantum-dot spectroscopy," Nat. Photonics 3, 724-728 (2009).
[CrossRef]

Nature (4)

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, "Experimental realization of a one-atom laser in the regime of strong coupling," Nature 425, 268-271 (2003).
[CrossRef] [PubMed]

H. Carmichael and L. A. Orozco, "Quantum optics: Single atom lases orderly light," Nature 425, 246-247 (2003).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. A (4)

A. D. Boozer, A. Boca, J. R. Buck, J. McKeever, and H. J. Kimble, "Comparison of theory and experiment for a one-atom laser in a regime of strong coupling," Phys. Rev. A 70, 023814 (2004).
[CrossRef]

P. R. Rice and H. J. Carmichael, "Photon statistics of cavity-QED lasers," Phys. Rev. A 50, 4318-4329 (1994).
[CrossRef] [PubMed]

O. Benson and Y. Yamamoto, "Master-equation model of a single-quantum-dot microsphere laser," Phys. Rev. A 59, 4756-4763 (1999).
[CrossRef]

Y. Mu and C. M. Savage, "One-atom lasers," Phys. Rev. A 46, 5944-5954 (1992).
[CrossRef] [PubMed]

Phys. Rev. B (7)

A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, "Electronic structure and magneto-optics of self-assembled quantum dots," Phys. Rev. B 54, 5604-5608 (1996).
[CrossRef]

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, "Carrier relaxation dynamics in self-assembled semiconductor quantum dots," Phys. Rev. B 80, 235319 (2009).
[CrossRef]

P. Hawrylak, "Excitonic artificial atoms: Engineering optical properties of quantum dots," Phys. Rev. B 60, 5597-5608 (1999).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005).
[CrossRef]

E. Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, "Two-photon lasing by a single quantum dot in a high- q microcavity," Phys. Rev. B 81, 035302 (2010).
[CrossRef]

J. I. Perea, D. Porras, and C. Tejedor, "Dynamics of the excitations of a quantum dot in a microcavity," Phys. Rev. B 70, 115304 (2004).
[CrossRef]

M. Lorke, T. R. Nielsen, J. Seebeck, P. Gartner, and F. Jahnke, "Influence of carrier-carrier and electron-phonon correlations on optical absorption and gain in quantum-dot systems," Phys. Rev. B 73, 085324 (2006).
[CrossRef]

Phys. Rev. Lett. (6)

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

D. Meschede, H. Walter, and G. Muller, "One-atom maser," Phys. Rev. Lett. 54, 551-554 (1985).
[CrossRef] [PubMed]

K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, "Microlaser: A laser with one atome in an optical resonator," Phys. Rev. Lett. 73, 3375-3378 (1994).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Brouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

S. M. Ulrich, C. Gies, J. Wiersig, S. Reitzenstein, C. Hofmann, A. L¨offler, A. Forchel, F. Jahnke, and P. Michler, "Photon statistics of semiconductor microcavity lasers," Phys. Rev. Lett. 98, 043906 (2007).
[CrossRef] [PubMed]

Z. G. Xie, S. Gotzinger, W. Fang, H. Cao, and G. S. Solomon, "Influence of a single quantum dot state on the characteristics of a microdisk laser," Phys. Rev. Lett. 98, 117401 (2007).
[CrossRef] [PubMed]

Phys. Stat. Sol. (3)

W. A. Hugel, M. F. Heinrich, and M. Wegener, "Dephasing due to carrier-carrier scattering in 2d," Phys. Stat. Sol.(b) 221, 473-476 (2000).
[CrossRef]

H. Haug, "Coulomb quantum kinetics for semiconductor femtosecond spectroscopy," Phys. Stat. Sol.(b) 221, 179-188 (2000).
[CrossRef]

M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, "Excitation dependence of the homogeneous linewidths in quantum dots," Phys. Stat. Sol. (c)  3, 2393-2396 (2006).
[CrossRef]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science,  290, 2282-2285 (2000).
[CrossRef] [PubMed]

Other (2)

M. Bayer and A. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.6Ga0.4As/GaAs self-assembled quantum dots," Phys. Rev. B 65, 041308(R) (2002).
[CrossRef]

H. J. Carmichael, Statistical Methods in Quantum Optics 1, (Springer, Berlin, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Localized single-particle states ∣1〉 - ∣4〉 in the QD confinement potential and carrier transitions for an optically pumped QD laser. The pump process P excites holes and electrons in the states ∣1〉 and ∣4〉 while carrier relaxation with rates γ 34 and γ 12 couples the pump levels to the laser levels; γ 23, γ 14 are the laser- and pump-level spontaneous emission rate into non-lasing modes.

Fig. 2.
Fig. 2.

System configurations corresponding to two electrons in the four confined QD states of Fig. 1. The top row shows the state occupation for electrons in the conduction and valence-band picture while the bottom row corresponds to electrons (filled circles) and holes (open circles) in the electron-hole picture. The ground states (0X) is given by two valence electrons in the states ∣1〉, ∣2〉. Single excitons with electrons and holes in the lowest QD state (s-state) and excited QD state (p-state) are represented by 1XS and 1Xp , respectively. The sp-biexciton is labeled as 2Xsp . Selection rules typically identify 0XS and 0XP as optically dark configurations.

Fig. 3.
Fig. 3.

Transitions coupled to the laser mode: (a) exciton and (b) biexciton recombination.

Fig. 4.
Fig. 4.

(a) Steady-state mean photon number 〈n〉 vs. pump rate P (solid line) together with its contributions from the exciton (dashed line) and biexciton (dotted line) transitions according to Fig. 3. (b) Second-order photon correlation function g (2)(0) versus pump rate P. (c) Excitation-induced dephasing (dashed line) and reduction of the Coulomb exchange energy EX sp due to WL carrier screening (solid line). (d) Photon emission spectrum for selected pump rates. Lines are vertically displaced. For all curves the light-matter coupling constant g = 0.9 ps-1, cavity losses at rate κ = 0.1 ps-1 and spontaneous emission rates γ 23 = γ 14 = 0.01 ps-1 are used.

Fig. 5.
Fig. 5.

(a) Steady-state mean photon number 〈n〉 vs. pump rate P. From bottom to top, the cavity losses are reduced using κ = 0.1 ps-1 , 0.05 ps-1, 0.025 ps-1, 0.0125 ps-1. For a cavity mode wavelength of 915 nm this amounts to a cavity quality Q ~ 21 × 103,42 × 103, 84 × 103, 168 ×103. Other parameters are the same as in Fig. 4. (b) Corresponding results for the second-order photon correlation function g (2)(0) in the stationary regime vs. pump rate P.

Fig. 6.
Fig. 6.

(a) Steady-state mean photon number 〈n〉, (b) second-order photon correlation function g (2)(0), (c) exciton (solid line) and biexciton (dashed line) contribution to the mean photon number, versus pump rate P. The black lines correspond to the results of Fig. 4. For the red lines the Coulomb energy and the dephasing are kept constant: EX sp = 2.68 meV, γ 12 = γ 34 = 0.05 meV. In comparison to the red curves, EX sp = 5.36 meV is used for the blue lines. The green curves correspond to the “atomic model”, using σij instead of ai aj . Apart from the Coulomb interaction, which is assumed to be already included in the atomic con-figuration energies (therefore EX sp = 0), the parameters are the same as for the red curves.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Tρ=i[HJC+HCoul,ρ]
+(i,j)γij2 (2aiajρajaiajaiaiajρρajaiaiaj)
+κ2 (2bbρbb) .
HJC=g[ba2a3+ba3a2] ,
HCoulX=EspX [n3n4+(1n1)(1n2)]
HCoulD=12i,j=s,pEi,jD(nienih) (njenjh)
ba2a3=ba2a3a1a1 +ba2a3a4a4,

Metrics