Abstract

We investigated dual wavelength mid-infrared quantum cascade lasers based on heterogeneous cascades. We found that due to gain competition laser action tends to start in higher order lateral modes. The mid-infrared mode with the lower threshold current reduces population inversion for the second laser with the higher threshold current due to stimulated emission. We developed a rate equation model to quantitatively describe mode interactions due to mutual gain depletion.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [CrossRef]
  2. S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ–3.1µm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94(3), 031106 (2009).
    [CrossRef]
  3. M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ~16 µm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271 (2001).
    [CrossRef]
  4. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
    [CrossRef]
  5. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
    [CrossRef]
  6. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
    [CrossRef]
  7. Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
    [CrossRef]
  8. C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, “Quantum cascade lasers with a heterogeneous cascade: two-wavelength operation,” Appl. Phys. Lett. 79(5), 572 (2001).
    [CrossRef]
  9. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88(20), 201113 (2006).
    [CrossRef]
  10. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett. 95(6), 061103 (2009).
    [CrossRef]
  11. E. Rosencher, A. Fiore, B. Vinter, V. Berger, Ph. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).
    [CrossRef]
  12. C. Sirtori, F. Capasso, J. Faist, L. N. Pfeiffer, and K. W. West, “Far-infrared generation by doubly resonant difference frequency mixing in a coupled quantum well two-dimensional electron gas system,” Appl. Phys. Lett. 65(4), 445 (1994).
    [CrossRef]
  13. N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant second-order nonlinear optical processes in quantum cascade lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
    [CrossRef]
  14. M. Austerer, C. Pflügl, S. Golka, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Coherent 5.35 µm surface emission from a GaAs-based distributed feedback quantum-cascade laser,” Appl. Phys. Lett. 88(12), 121104 (2006).
    [CrossRef]
  15. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
    [CrossRef]
  16. M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
    [CrossRef]
  17. C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93(16), 161110 (2008).
    [CrossRef]
  18. J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
    [CrossRef]
  19. A. Belyanin, M. Troccoli, and F. Capasso, “Raman Injection and Inversionless Intersubband Lasers” in Intersubband Transitions in Quantum Structures, R. Paiella (McGraw-Hill Companies, 2006), chapter 6.3.5.

2009 (4)

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ–3.1µm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94(3), 031106 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

2008 (4)

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93(16), 161110 (2008).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

2007 (1)

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[CrossRef]

2006 (2)

M. Austerer, C. Pflügl, S. Golka, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Coherent 5.35 µm surface emission from a GaAs-based distributed feedback quantum-cascade laser,” Appl. Phys. Lett. 88(12), 121104 (2006).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88(20), 201113 (2006).
[CrossRef]

2003 (1)

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant second-order nonlinear optical processes in quantum cascade lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[CrossRef]

2002 (1)

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[CrossRef]

2001 (2)

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ~16 µm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271 (2001).
[CrossRef]

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, “Quantum cascade lasers with a heterogeneous cascade: two-wavelength operation,” Appl. Phys. Lett. 79(5), 572 (2001).
[CrossRef]

1996 (1)

E. Rosencher, A. Fiore, B. Vinter, V. Berger, Ph. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).
[CrossRef]

1994 (2)

C. Sirtori, F. Capasso, J. Faist, L. N. Pfeiffer, and K. W. West, “Far-infrared generation by doubly resonant difference frequency mixing in a coupled quantum well two-dimensional electron gas system,” Appl. Phys. Lett. 65(4), 445 (1994).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef]

Aellen, T.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[CrossRef]

Andrews, A. M.

M. Austerer, C. Pflügl, S. Golka, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Coherent 5.35 µm surface emission from a GaAs-based distributed feedback quantum-cascade laser,” Appl. Phys. Lett. 88(12), 121104 (2006).
[CrossRef]

Austerer, M.

M. Austerer, C. Pflügl, S. Golka, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Coherent 5.35 µm surface emission from a GaAs-based distributed feedback quantum-cascade laser,” Appl. Phys. Lett. 88(12), 121104 (2006).
[CrossRef]

Bai, Y.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

Baillargeon, J. N.

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, “Quantum cascade lasers with a heterogeneous cascade: two-wavelength operation,” Appl. Phys. Lett. 79(5), 572 (2001).
[CrossRef]

Beck, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[CrossRef]

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ~16 µm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271 (2001).
[CrossRef]

Belkin, M. A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93(16), 161110 (2008).
[CrossRef]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[CrossRef]

Belyanin, A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93(16), 161110 (2008).
[CrossRef]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[CrossRef]

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant second-order nonlinear optical processes in quantum cascade lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[CrossRef]

Berger, V.

E. Rosencher, A. Fiore, B. Vinter, V. Berger, Ph. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).
[CrossRef]

Blaser, S.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[CrossRef]

Bois, Ph.

E. Rosencher, A. Fiore, B. Vinter, V. Berger, Ph. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).
[CrossRef]

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Capasso, F.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93(16), 161110 (2008).
[CrossRef]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[CrossRef]

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant second-order nonlinear optical processes in quantum cascade lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[CrossRef]

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, “Quantum cascade lasers with a heterogeneous cascade: two-wavelength operation,” Appl. Phys. Lett. 79(5), 572 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, L. N. Pfeiffer, and K. W. West, “Far-infrared generation by doubly resonant difference frequency mixing in a coupled quantum well two-dimensional electron gas system,” Appl. Phys. Lett. 65(4), 445 (1994).
[CrossRef]

Cho, A. Y.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[CrossRef]

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant second-order nonlinear optical processes in quantum cascade lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[CrossRef]

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, “Quantum cascade lasers with a heterogeneous cascade: two-wavelength operation,” Appl. Phys. Lett. 79(5), 572 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef]

Cockburn, J. W.

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ–3.1µm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94(3), 031106 (2009).
[CrossRef]

Colombelli, R.

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant second-order nonlinear optical processes in quantum cascade lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[CrossRef]

Darvish, S. R.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

Diehl, L.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Faist, J.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93(16), 161110 (2008).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88(20), 201113 (2006).
[CrossRef]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[CrossRef]

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ~16 µm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, L. N. Pfeiffer, and K. W. West, “Far-infrared generation by doubly resonant difference frequency mixing in a coupled quantum well two-dimensional electron gas system,” Appl. Phys. Lett. 65(4), 445 (1994).
[CrossRef]

Fan, J. Y.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Fiore, A.

E. Rosencher, A. Fiore, B. Vinter, V. Berger, Ph. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).
[CrossRef]

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93(16), 161110 (2008).
[CrossRef]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

Geiser, M.

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93(16), 161110 (2008).
[CrossRef]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88(20), 201113 (2006).
[CrossRef]

Giovannini, M.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88(20), 201113 (2006).
[CrossRef]

Gmachl, C.

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant second-order nonlinear optical processes in quantum cascade lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[CrossRef]

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, “Quantum cascade lasers with a heterogeneous cascade: two-wavelength operation,” Appl. Phys. Lett. 79(5), 572 (2001).
[CrossRef]

Go, R.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Golka, S.

M. Austerer, C. Pflügl, S. Golka, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Coherent 5.35 µm surface emission from a GaAs-based distributed feedback quantum-cascade laser,” Appl. Phys. Lett. 88(12), 121104 (2006).
[CrossRef]

Hofstetter, D.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[CrossRef]

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ~16 µm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271 (2001).
[CrossRef]

Hopkinson, M.

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ–3.1µm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94(3), 031106 (2009).
[CrossRef]

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Hutchinson, A. L.

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, “Quantum cascade lasers with a heterogeneous cascade: two-wavelength operation,” Appl. Phys. Lett. 79(5), 572 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef]

Kennedy, K.

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ–3.1µm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94(3), 031106 (2009).
[CrossRef]

Kocharovsky, V.

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant second-order nonlinear optical processes in quantum cascade lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[CrossRef]

Krysa, A. B.

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ–3.1µm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94(3), 031106 (2009).
[CrossRef]

Kumar N. Patel, C.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Lyakh, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88(20), 201113 (2006).
[CrossRef]

Mohan, A.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88(20), 201113 (2006).
[CrossRef]

Nagle, J.

E. Rosencher, A. Fiore, B. Vinter, V. Berger, Ph. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).
[CrossRef]

Oakley, D. C.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[CrossRef]

Owschimikow, N.

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant second-order nonlinear optical processes in quantum cascade lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[CrossRef]

Patel, C. K. N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

Pfeiffer, L. N.

C. Sirtori, F. Capasso, J. Faist, L. N. Pfeiffer, and K. W. West, “Far-infrared generation by doubly resonant difference frequency mixing in a coupled quantum well two-dimensional electron gas system,” Appl. Phys. Lett. 65(4), 445 (1994).
[CrossRef]

Pflügl, C.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93(16), 161110 (2008).
[CrossRef]

M. Austerer, C. Pflügl, S. Golka, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Coherent 5.35 µm surface emission from a GaAs-based distributed feedback quantum-cascade laser,” Appl. Phys. Lett. 88(12), 121104 (2006).
[CrossRef]

Razeghi, M.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

Revin, D. G.

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ–3.1µm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94(3), 031106 (2009).
[CrossRef]

Roch, T.

M. Austerer, C. Pflügl, S. Golka, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Coherent 5.35 µm surface emission from a GaAs-based distributed feedback quantum-cascade laser,” Appl. Phys. Lett. 88(12), 121104 (2006).
[CrossRef]

Rochat, M.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[CrossRef]

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ~16 µm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271 (2001).
[CrossRef]

Rosencher, E.

E. Rosencher, A. Fiore, B. Vinter, V. Berger, Ph. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).
[CrossRef]

Schrenk, W.

M. Austerer, C. Pflügl, S. Golka, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Coherent 5.35 µm surface emission from a GaAs-based distributed feedback quantum-cascade laser,” Appl. Phys. Lett. 88(12), 121104 (2006).
[CrossRef]

Sirtori, C.

C. Sirtori, F. Capasso, J. Faist, L. N. Pfeiffer, and K. W. West, “Far-infrared generation by doubly resonant difference frequency mixing in a coupled quantum well two-dimensional electron gas system,” Appl. Phys. Lett. 65(4), 445 (1994).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef]

Sivco, D. L.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[CrossRef]

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant second-order nonlinear optical processes in quantum cascade lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[CrossRef]

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, “Quantum cascade lasers with a heterogeneous cascade: two-wavelength operation,” Appl. Phys. Lett. 79(5), 572 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef]

Slivken, S.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

Strasser, G.

M. Austerer, C. Pflügl, S. Golka, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Coherent 5.35 µm surface emission from a GaAs-based distributed feedback quantum-cascade laser,” Appl. Phys. Lett. 88(12), 121104 (2006).
[CrossRef]

Tanbun-Ek, T.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Terazzi, R.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Tsekoun, A.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Turner, G. W.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[CrossRef]

Vineis, C. J.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[CrossRef]

Vinter, B.

E. Rosencher, A. Fiore, B. Vinter, V. Berger, Ph. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).
[CrossRef]

Wang, Q. J.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93(16), 161110 (2008).
[CrossRef]

Wang, X. J.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

West, K. W.

C. Sirtori, F. Capasso, J. Faist, L. N. Pfeiffer, and K. W. West, “Far-infrared generation by doubly resonant difference frequency mixing in a coupled quantum well two-dimensional electron gas system,” Appl. Phys. Lett. 65(4), 445 (1994).
[CrossRef]

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93(16), 161110 (2008).
[CrossRef]

Xie, F.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

Zhang, S. Y.

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ–3.1µm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94(3), 031106 (2009).
[CrossRef]

Appl. Phys. Lett. (13)

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ–3.1µm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94(3), 031106 (2009).
[CrossRef]

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ~16 µm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271 (2001).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 Watt continuous-wave room temperature single-facet emission from quantum cascade lasers based on non-resonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically-cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[CrossRef]

C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, F. Capasso, and A. Y. Cho, “Quantum cascade lasers with a heterogeneous cascade: two-wavelength operation,” Appl. Phys. Lett. 79(5), 572 (2001).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88(20), 201113 (2006).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, L. N. Pfeiffer, and K. W. West, “Far-infrared generation by doubly resonant difference frequency mixing in a coupled quantum well two-dimensional electron gas system,” Appl. Phys. Lett. 65(4), 445 (1994).
[CrossRef]

M. Austerer, C. Pflügl, S. Golka, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Coherent 5.35 µm surface emission from a GaAs-based distributed feedback quantum-cascade laser,” Appl. Phys. Lett. 88(12), 121104 (2006).
[CrossRef]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

C. Pflügl, M. A. Belkin, Q. J. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 93(16), 161110 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[CrossRef]

Nat. Photonics (1)

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1(5), 288–292 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Resonant second-order nonlinear optical processes in quantum cascade lasers,” Phys. Rev. Lett. 90(4), 043902 (2003).
[CrossRef]

Science (2)

E. Rosencher, A. Fiore, B. Vinter, V. Berger, Ph. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef]

Other (1)

A. Belyanin, M. Troccoli, and F. Capasso, “Raman Injection and Inversionless Intersubband Lasers” in Intersubband Transitions in Quantum Structures, R. Paiella (McGraw-Hill Companies, 2006), chapter 6.3.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics