Abstract

In this paper, we present an interesting result of nonlinear light pulse propagation within a Mach-Zehnder Inteferometer (MZI) which can be used to extend the existed on off keying (OOK) techniques. The goal of this paper is OOK generation based on MZI incorporating a pumped nonlinear ring resonators system. We first analyze the principles of a phase modulation scheme using MZI incorporating the triple nonlinear ring resonators, which can be fabricated and used in practical communications. After that, we focus on the recent modulation schemes, where the all-optical on off keying and the phase shift control for phase shaped binary transmission (PSBT) are discussed in details. The novelty of this work is that the nonlinear ring resonators are used incorporating a MZI, where the extended switching generation can be achieved and seen.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using OOK, FSK, and DPSK modulation,” IEEE Photon. Technol. Lett. 2(12), 908–910 (1990).
    [CrossRef]
  2. S. R. Nuccio, O. F. Yilmaz, S. Khaleghi, X. Wu, L. Christen, I. Fazal, and A. E. Willner, “Tunable 503 ns optical delay of 40 Gbit/s RZ-OOK and RZ-DPSK using a wavelength scheme for phase conjugation to reduce residual dispersion and increase delay,” Opt. Lett. 34(12), 1903–1905 (2009).
    [CrossRef] [PubMed]
  3. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire,” Opt. Express 17(15), 12987–12999 (2009).
    [CrossRef] [PubMed]
  4. W. Hong, D. Huang, X. Zhang, and G. Zhu, “Simulation and analysis of OOK-to-BPSK format conversion based on gain-transparent SOA used as optical phase-modulator,” Opt. Express 15(26), 18357–18369 (2007).
    [CrossRef] [PubMed]
  5. T. Nishitani, T. Konishi, and K. Itoh, “All-optical M-ary ASK signal demultiplexer based on a photonic analog-to-digital conversion,” Opt. Express 15(25), 17025–17031 (2007).
    [CrossRef] [PubMed]
  6. K. Mishina, S. Kitagawa, and A. Maruta, “All-optical modulation format conversion from on-off-keying to multiple-level phase-shift-keying based on nonlinearity in optical fiber,” Opt. Express 15(13), 8444–8453 (2007).
    [CrossRef] [PubMed]
  7. I. Kang, “Phase-shift-keying and on-off-keying with improved performances using electroabsorption modulators with interferometric effects,” Opt. Express 15(4), 1467–1473 (2007).
    [CrossRef] [PubMed]
  8. Y. G. Wen, L. K. Chen, K. P. Ho, F. Tong, and W. S. Chan, “Performance verification of a variable bit-rate limiter for on-off keying (OOK) optical systems,” J. Lightwave Technol. 18(6), 779–786 (2000).
    [CrossRef]
  9. T. Mizuochi, K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, K. Motoshima, and K. Kasahara, “A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations due to nonlinear phase noise,” J. Lightwave Technol. 21(9), 1933–1943 (2003).
    [CrossRef]
  10. C. Xie, L. Möller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003).
    [CrossRef]
  11. M. Matsumoto, “All-optical signal regeneration using fiber nonlinearity,” Eur. Phys. J. Spec. Top. 173(1), 297–312 (2009).
    [CrossRef]
  12. K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 29(20), 2357–2359 (2004).
    [CrossRef] [PubMed]
  13. A. Akhtar, L. Pavel, and S. Kumar, “Modeling interchannel FWM with walk-off in RZ-DPSK single span links,” J. Lightwave Technol. 26(14), 2142–2154 (2008).
    [CrossRef]
  14. C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions”, IEEE J. of Select,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
    [CrossRef]
  15. J. Li, L. Li, J. Zhao, and C. Li, “Ultrafast, low power, and highly stable all-optical switch in MZI with two-arm-sharing nonlinear ring resonator,” Opt. Commun. 256(4-6), 319–325 (2005).
    [CrossRef]
  16. J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29(7), 769–771 (2004).
    [CrossRef] [PubMed]
  17. A. Rostami, “Low threshold and tunable all-optical switch using two-photon absorption in array of nonlinear ring resonators coupled to MZI,” Microelectron. J. 37(9), 976–981 (2006).
    [CrossRef]
  18. A. Bananej and C. Li, “Parameter controllable all-optical switching in a high-nonlinear micro ring coupled MZI through a pumped nonlinear coupler,” J. Nonlinear Opt. Phys. Mater. 14(1), 85–91 (2005).
    [CrossRef]
  19. S. Mitatha, “Dark soliton behaviors within the nonlinear micro and nanoring resonators and applications,” Prog. Electromagn. Res. PIER 99, 383–404 (2009).
    [CrossRef]
  20. D. G. Rabus, M. Hamacher, and H. Heidrich, “Resonance frequency tuning of a double ring resonator in GaInAsP/InP: Experiment and simulation,” Jpn. J. Appl. Phys. 41(Part 1, No. 2B), 1186–1189 (2002).
    [CrossRef]
  21. D. G. Rabus, Integrated Ring Resonators, (Springer-Verlag, 2007). Chap. 5.4, pp. 169–173.
  22. OptiFDTD finite difference time domain photonics simulation software, OptiWave systems Inc. © 2008, http://www.optiwave.com/
  23. OptiWave systems Inc., private communication.

2009

2008

2007

2006

A. Rostami, “Low threshold and tunable all-optical switch using two-photon absorption in array of nonlinear ring resonators coupled to MZI,” Microelectron. J. 37(9), 976–981 (2006).
[CrossRef]

2005

A. Bananej and C. Li, “Parameter controllable all-optical switching in a high-nonlinear micro ring coupled MZI through a pumped nonlinear coupler,” J. Nonlinear Opt. Phys. Mater. 14(1), 85–91 (2005).
[CrossRef]

J. Li, L. Li, J. Zhao, and C. Li, “Ultrafast, low power, and highly stable all-optical switch in MZI with two-arm-sharing nonlinear ring resonator,” Opt. Commun. 256(4-6), 319–325 (2005).
[CrossRef]

2004

2003

T. Mizuochi, K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, K. Motoshima, and K. Kasahara, “A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations due to nonlinear phase noise,” J. Lightwave Technol. 21(9), 1933–1943 (2003).
[CrossRef]

C. Xie, L. Möller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003).
[CrossRef]

2002

D. G. Rabus, M. Hamacher, and H. Heidrich, “Resonance frequency tuning of a double ring resonator in GaInAsP/InP: Experiment and simulation,” Jpn. J. Appl. Phys. 41(Part 1, No. 2B), 1186–1189 (2002).
[CrossRef]

2000

1990

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using OOK, FSK, and DPSK modulation,” IEEE Photon. Technol. Lett. 2(12), 908–910 (1990).
[CrossRef]

Abe, J.

Akhtar, A.

Astar, W.

Bananej, A.

A. Bananej and C. Li, “Parameter controllable all-optical switching in a high-nonlinear micro ring coupled MZI through a pumped nonlinear coupler,” J. Nonlinear Opt. Phys. Mater. 14(1), 85–91 (2005).
[CrossRef]

Boyd, R. W.

Carter, G. M.

Chan, W. S.

Chen, L. K.

Christen, L.

Croussore, K.

Dadap, J. I.

Driscoll, J. B.

Fazal, I.

Gnauck, A. H.

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using OOK, FSK, and DPSK modulation,” IEEE Photon. Technol. Lett. 2(12), 908–910 (1990).
[CrossRef]

Green, W. M. J.

Grover, R.

Hamacher, M.

D. G. Rabus, M. Hamacher, and H. Heidrich, “Resonance frequency tuning of a double ring resonator in GaInAsP/InP: Experiment and simulation,” Jpn. J. Appl. Phys. 41(Part 1, No. 2B), 1186–1189 (2002).
[CrossRef]

Haunstein, H.

C. Xie, L. Möller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003).
[CrossRef]

Heebner, J. E.

Heidrich, H.

D. G. Rabus, M. Hamacher, and H. Heidrich, “Resonance frequency tuning of a double ring resonator in GaInAsP/InP: Experiment and simulation,” Jpn. J. Appl. Phys. 41(Part 1, No. 2B), 1186–1189 (2002).
[CrossRef]

Ho, K. P.

Ho, P.-T.

Hong, W.

Huang, D.

Hunsche, S.

C. Xie, L. Möller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003).
[CrossRef]

Ishida, K.

Itoh, K.

Kahn, J. M.

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using OOK, FSK, and DPSK modulation,” IEEE Photon. Technol. Lett. 2(12), 908–910 (1990).
[CrossRef]

Kang, I.

Kasahara, K.

Khaleghi, S.

Kim, C.

Kinjo, K.

Kitagawa, S.

Kobayashi, T.

Koch, T. L.

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using OOK, FSK, and DPSK modulation,” IEEE Photon. Technol. Lett. 2(12), 908–910 (1990).
[CrossRef]

Konishi, T.

Korotky, S. K.

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using OOK, FSK, and DPSK modulation,” IEEE Photon. Technol. Lett. 2(12), 908–910 (1990).
[CrossRef]

Kumar, S.

Lepeshkin, N. N.

Li, C.

A. Bananej and C. Li, “Parameter controllable all-optical switching in a high-nonlinear micro ring coupled MZI through a pumped nonlinear coupler,” J. Nonlinear Opt. Phys. Mater. 14(1), 85–91 (2005).
[CrossRef]

J. Li, L. Li, J. Zhao, and C. Li, “Ultrafast, low power, and highly stable all-optical switch in MZI with two-arm-sharing nonlinear ring resonator,” Opt. Commun. 256(4-6), 319–325 (2005).
[CrossRef]

Li, G.

Li, J.

J. Li, L. Li, J. Zhao, and C. Li, “Ultrafast, low power, and highly stable all-optical switch in MZI with two-arm-sharing nonlinear ring resonator,” Opt. Commun. 256(4-6), 319–325 (2005).
[CrossRef]

Li, L.

J. Li, L. Li, J. Zhao, and C. Li, “Ultrafast, low power, and highly stable all-optical switch in MZI with two-arm-sharing nonlinear ring resonator,” Opt. Commun. 256(4-6), 319–325 (2005).
[CrossRef]

Liu, X.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire,” Opt. Express 17(15), 12987–12999 (2009).
[CrossRef] [PubMed]

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions”, IEEE J. of Select,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
[CrossRef]

Maruta, A.

Matsumoto, M.

M. Matsumoto, “All-optical signal regeneration using fiber nonlinearity,” Eur. Phys. J. Spec. Top. 173(1), 297–312 (2009).
[CrossRef]

Mishina, K.

Mitatha, S.

S. Mitatha, “Dark soliton behaviors within the nonlinear micro and nanoring resonators and applications,” Prog. Electromagn. Res. PIER 99, 383–404 (2009).
[CrossRef]

Mizuochi, T.

Möller, L.

C. Xie, L. Möller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003).
[CrossRef]

Motoshima, K.

Nishitani, T.

Nuccio, S. R.

Osgood, R. M.

Pavel, L.

Rabus, D. G.

D. G. Rabus, M. Hamacher, and H. Heidrich, “Resonance frequency tuning of a double ring resonator in GaInAsP/InP: Experiment and simulation,” Jpn. J. Appl. Phys. 41(Part 1, No. 2B), 1186–1189 (2002).
[CrossRef]

Reichmann, K. C.

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using OOK, FSK, and DPSK modulation,” IEEE Photon. Technol. Lett. 2(12), 908–910 (1990).
[CrossRef]

Rostami, A.

A. Rostami, “Low threshold and tunable all-optical switch using two-photon absorption in array of nonlinear ring resonators coupled to MZI,” Microelectron. J. 37(9), 976–981 (2006).
[CrossRef]

Schweinsberg, A.

Tong, F.

Veselka, J. J.

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using OOK, FSK, and DPSK modulation,” IEEE Photon. Technol. Lett. 2(12), 908–910 (1990).
[CrossRef]

Vlasov, Y. A.

Wei, X.

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions”, IEEE J. of Select,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
[CrossRef]

Wen, Y. G.

Wicks, G. W.

Willner, A. E.

Wu, X.

Xie, C.

C. Xie, L. Möller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003).
[CrossRef]

Xu, C.

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions”, IEEE J. of Select,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
[CrossRef]

Yilmaz, O. F.

Zhang, X.

Zhao, J.

J. Li, L. Li, J. Zhao, and C. Li, “Ultrafast, low power, and highly stable all-optical switch in MZI with two-arm-sharing nonlinear ring resonator,” Opt. Commun. 256(4-6), 319–325 (2005).
[CrossRef]

Zhu, G.

Eur. Phys. J. Spec. Top.

M. Matsumoto, “All-optical signal regeneration using fiber nonlinearity,” Eur. Phys. J. Spec. Top. 173(1), 297–312 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions”, IEEE J. of Select,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using OOK, FSK, and DPSK modulation,” IEEE Photon. Technol. Lett. 2(12), 908–910 (1990).
[CrossRef]

C. Xie, L. Möller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003).
[CrossRef]

J. Lightwave Technol.

J. Nonlinear Opt. Phys. Mater.

A. Bananej and C. Li, “Parameter controllable all-optical switching in a high-nonlinear micro ring coupled MZI through a pumped nonlinear coupler,” J. Nonlinear Opt. Phys. Mater. 14(1), 85–91 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

D. G. Rabus, M. Hamacher, and H. Heidrich, “Resonance frequency tuning of a double ring resonator in GaInAsP/InP: Experiment and simulation,” Jpn. J. Appl. Phys. 41(Part 1, No. 2B), 1186–1189 (2002).
[CrossRef]

Microelectron. J.

A. Rostami, “Low threshold and tunable all-optical switch using two-photon absorption in array of nonlinear ring resonators coupled to MZI,” Microelectron. J. 37(9), 976–981 (2006).
[CrossRef]

Opt. Commun.

J. Li, L. Li, J. Zhao, and C. Li, “Ultrafast, low power, and highly stable all-optical switch in MZI with two-arm-sharing nonlinear ring resonator,” Opt. Commun. 256(4-6), 319–325 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Prog. Electromagn. Res.

S. Mitatha, “Dark soliton behaviors within the nonlinear micro and nanoring resonators and applications,” Prog. Electromagn. Res. PIER 99, 383–404 (2009).
[CrossRef]

Other

D. G. Rabus, Integrated Ring Resonators, (Springer-Verlag, 2007). Chap. 5.4, pp. 169–173.

OptiFDTD finite difference time domain photonics simulation software, OptiWave systems Inc. © 2008, http://www.optiwave.com/

OptiWave systems Inc., private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of OOK system, system size is 10 × 40µm2 .

Fig. 2
Fig. 2

Schematic diagram of single NRR (i = 2, 3, 4).

Fig. 3
Fig. 3

Simulation results of effective phase, where (a) single NRR vs. nonlinear phase (b) triple NRR vs. nonlinear phase. (α = 0.5dBmm−1 , γ = 0.1, n2 = 2.2 × 10−13 m2/W, n0 = 3.34, λ = 1.55µm, β = 0)

Fig. 4
Fig. 4

OOK result as generated at wavelength center λ0 = 1.31µm and input power 3mW.

Fig. 5
Fig. 5

OOK result as generated at wavelength center λ0 = 1.55µm and input power 3mW.

Fig. 6
Fig. 6

Delay time of OOK.

Fig. 7
Fig. 7

Compare OOK generate at wavelength center, λ0 = 1.55µm and λ0 = 1.31µm, respectively.

Fig. 8
Fig. 8

OOK result as generated in frequency domain and input power 3mW.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E11=1γ11κ1Ein,
E21=j1γ1κ1Ein.
ERi=1γi1κiELi+j1γiκiEini,
Eti=1γi1κiEini+j1γiκiELi,
ELi=ERiexp(α2LiγNLi|ERi|2Li),
γNLi=β2jω0cn2,
α˜=α+β|E|2,n˜=n+n2|E|2,
n2=38nRe[χ(3)],
β=3ω04nCIm[χ(3)].
T=EtiEini=1γi1κiκi(1γi)exp(α2LiϕNLi)11γi1κiexp(α2LiϕNLi),
ϕeff=ϕi=tan1[κi(1γi)e1/2(α+β|ERi|2)Li×sin((ω0/C)n2Li|ERi|2)A+B+D],
ϕeff=ϕi=tan1[κisin(ω0Cn2Li|ERi|2)21κi(2κi)cos(ω0Cn2Li|ERi|2)].
Pt1Pin=|Et1Ein|2.
Et2Ein=1γ11γ21γ31κ1(1κ21κ31γ21κ3eα2L1ϕNL,11γ31κ2eα2L2ϕNL,2+1γ21γ3eα2(L1+L2)(ϕNL,1+ϕNL,2))(1+1γ21κ2eα2L1ϕNL,11γ31κ3eα2L2ϕNL,2+1γ21γ31κ21κ3eα2(L1+L2)(ϕNL,1+ϕNL,2)),
Pt2Pin=|Et2Ein|2.
Et3Ein=1γ11γ21γ31γ41κ1(1κ21κ31κ41κ31κ4eα2L1ϕNL,11κ21κ4eα2L2ϕNL,2+1κ4eα2(L1+L2)(ϕNL,1+ϕNL,2)1κ21κ3eα2L3ϕNL,3+1κ3eα2(L1+L3)(ϕNL,1+ϕNL,3)+1κ2eα2(L2+L3)(ϕNL,2+ϕNL,3)+1κ31κ4eα2(L1+L2+L3)(ϕNL,1+ϕNL,2+ϕNL,3))(1+1γ21κ2eα2L1ϕNL,11γ31κ3eα2L2ϕNL,21γ41κ4eα2L3ϕNL,3+1γ21γ31κ21κ3eα2(L1+L2)(ϕNL,1+ϕNL,2)+1γ31γ41κ31κ4eα2(L2+L3)(ϕNL,2+ϕNL,3)1γ21γ31γ41κ21κ31κ4eα2(L1+L2+L3)(ϕNL,1+ϕNL,2+ϕNL,3)).
Pt3Pin=|Et3Ein|2.
(Eout_1(On)Eout_2(Off))=1γ5(1κ5jκ5jκ51κ5)(ET3E22).

Metrics