Abstract

We investigated the effects of various noises on the performance of extended-reach WDM-PONs based on broadband light sources (BLSs). The maximum reach in BLS based WDM-PONs was analyzed by taking into account the impact of relative intensity noise of optical source, chromatic dispersion of transmission fiber and in-band crosstalk. We confirmed that the system’s performance of BLS based WDM-PONs would be strongly dependent on the equivalent optical bandwidth of optical source. From the results, we found that the maximum reach in BLS based WDM-PONs operating at 1.25 Gb/s could be increased to be ~70 km of single-mode fiber as long as the chirp and relative intensity noise (RIN) of optical source would be suppressed properly.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
    [CrossRef]
  2. H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Pérot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
    [CrossRef]
  3. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron. Lett. 37(19), 1181–1182 (2001).
    [CrossRef]
  4. R. P. Davey, P. Healey, I. Hope, P. Watkinson, D. B. Payne, O. Marmur, J. Ruhmann, and Y. Zuiderveld, “DWDM reach extension of a GPON to 135 km,” J. Lightwave Technol. 24(1), 29–31 (2006).
    [CrossRef]
  5. I. T. Monroy, R. Kjaer, B. Palsdottir, A. M. J. Koonen, and P. Jeppesen, “10 Gb/s bidirectional single fibre long reach PON link with distributed Raman amplification,” presented at Eur. Conf. Optical Communication (ECOC2006), Sep. 2006, We3.P.166.
  6. H. H. Lee, K. C. Reichmann, P. P. Iannone, X. Zhou, and B. Palsdottir, “A hybrid-amplified PON with 75-nm downstream band-with, 60 km reach, 1:64 split and multiple video services,” presented at OFC2007/NFOEC, Mar. 2007, OWL2
  7. S.-M. Lee, S.-G. Mun, M.-H. Kim, and C.-H. Lee, “Demonstration of a long-reach DWDM-PON for consolidation of metro and access networks,” J. Lightwave Technol. 25(1), 271–276 (2007).
    [CrossRef]
  8. P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fibre super luminescent sources,” IEE Electron. Lett. 26(2), 96–98 (1990).
    [CrossRef]
  9. C. H. Kim, J. H. Lee, D. K. Jung, Y.-G. Han, and S. B. Lee, “Performance comparison of directly-modulated, wavelength-locked Fabry-Perot laser diode and EAM-modulated spectrum-sliced ASE source for 1.25 Gb/s WDM-PON,” presented at OFC2007/NFOEC, Mar. 2007, JWA82.
  10. C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
    [CrossRef]
  11. C. H. Kim, J. H. Lee, and K. Lee, “Analysis of maximum reach in WDM PON architecture based on distributed Raman amplification and pump recycling technique,” Opt. Express 15(22), 14942–14947 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-22-14942 .
    [CrossRef] [PubMed]
  12. K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
    [CrossRef]
  13. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: implications for spectrum-sliced WDM systems,” J. Lightwave Technol. 23(8), 2399–2409 (2005).
    [CrossRef]

2009 (1)

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
[CrossRef]

2007 (2)

2006 (1)

2005 (1)

2001 (2)

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

2000 (1)

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Pérot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

1993 (1)

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[CrossRef]

1990 (1)

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fibre super luminescent sources,” IEE Electron. Lett. 26(2), 96–98 (1990).
[CrossRef]

Chung, Y. C.

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[CrossRef]

Davey, R. P.

DiGiovanni, D. J. Y.

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[CrossRef]

Ford, C.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Healey, P.

R. P. Davey, P. Healey, I. Hope, P. Watkinson, D. B. Payne, O. Marmur, J. Ruhmann, and Y. Zuiderveld, “DWDM reach extension of a GPON to 135 km,” J. Lightwave Technol. 24(1), 29–31 (2006).
[CrossRef]

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Hope, I.

Horak, P.

Ibsen, M.

Johnston, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Kang, S.-G.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Pérot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

Kim, C. H.

Kim, H. D.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Pérot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

Kim, M.-H.

Laming, R. I.

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fibre super luminescent sources,” IEE Electron. Lett. 26(2), 96–98 (1990).
[CrossRef]

Lealman, I.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Lee, C.-H.

S.-M. Lee, S.-G. Mun, M.-H. Kim, and C.-H. Lee, “Demonstration of a long-reach DWDM-PON for consolidation of metro and access networks,” J. Lightwave Technol. 25(1), 271–276 (2007).
[CrossRef]

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Pérot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

Lee, J. H.

Lee, J. S.

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[CrossRef]

Lee, K.

Lee, S. B.

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
[CrossRef]

Lee, S.-M.

Marmur, O.

McCoy, A. D.

Moore, R.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Morkel, P. R.

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fibre super luminescent sources,” IEE Electron. Lett. 26(2), 96–98 (1990).
[CrossRef]

Mun, S.-G.

Payne, D. B.

Payne, D. N.

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fibre super luminescent sources,” IEE Electron. Lett. 26(2), 96–98 (1990).
[CrossRef]

Perrin, S.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Richardson, D. J.

Rivers, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Ruhmann, J.

Sato, K.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

Thomsen, B. C.

Toba, H.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

Townley, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Townsend, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Watkinson, P.

Zuiderveld, Y.

IEE Electron. Lett. (2)

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fibre super luminescent sources,” IEE Electron. Lett. 26(2), 96–98 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. H. Kim, K. Lee, and S. B. Lee, “Effects of in-band crosstalk in wavelength-locked Fabry-Perot laser diode based WDM PONs,” IEEE Photon. Technol. Lett. 21(9), 596–598 (2009).
[CrossRef]

J. S. Lee, Y. C. Chung, and D. J. Y. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5(12), 1458–1461 (1993).
[CrossRef]

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Pérot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Other (3)

I. T. Monroy, R. Kjaer, B. Palsdottir, A. M. J. Koonen, and P. Jeppesen, “10 Gb/s bidirectional single fibre long reach PON link with distributed Raman amplification,” presented at Eur. Conf. Optical Communication (ECOC2006), Sep. 2006, We3.P.166.

H. H. Lee, K. C. Reichmann, P. P. Iannone, X. Zhou, and B. Palsdottir, “A hybrid-amplified PON with 75-nm downstream band-with, 60 km reach, 1:64 split and multiple video services,” presented at OFC2007/NFOEC, Mar. 2007, OWL2

C. H. Kim, J. H. Lee, D. K. Jung, Y.-G. Han, and S. B. Lee, “Performance comparison of directly-modulated, wavelength-locked Fabry-Perot laser diode and EAM-modulated spectrum-sliced ASE source for 1.25 Gb/s WDM-PON,” presented at OFC2007/NFOEC, Mar. 2007, JWA82.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Typical WDM-PON architectures based on (a) a spectrum-sliced optical source and (b) BLS seeded optical source

Fig. 2
Fig. 2

Measured RIN spectra of a spectrum-sliced ASE 3 and a wavelength-locked FP-LD.

Fig. 3
Fig. 3

Dispersion- and in-band crosstalk-induced power penalties calculated as a function of equivalent optical bandwidth, crosstalk-to-signal ratio and transmission length of SMF.

Fig. 4
Fig. 4

Contour plot of the system’s penalty calculated as a function of the equivalent optical bandwidth and the transmission length of SMF in a spectrum-sliced optical source based WDM-PON. We assumed that α = 0 and R = −30 dB in this calculation. For comparison, the measured results reported in [9] also represented by using square symbols.

Fig. 5
Fig. 5

Contour plot of the system’s penalty calculated as a function of the equivalent optical bandwidth and the transmission length of SMF in a BLS seeded optical source based WDM-PON. We assumed that R = −10 dB and used three different values of α.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PDISPERSION=10log(15.1595B2L2[0.18Bo2D2]),
PCROSSTALK=5log(116Q2RκπBoT),

Metrics