Abstract

We demonstrate broadband all-optical modulation in low loss hydrogenated-amorphous silicon (a-Si:H) waveguides. Significant modulation (~3 dB) occurs with a device of only 15 µm without the need for cavity interference effects in stark contrast to an identical crystalline silicon waveguide. We attribute the enhanced modulation to the significantly larger free-carrier absorption effect of a-Si:H, estimated here to be ∆α = 1.63∙10−16∙∆N cm−1. In addition, we measured the modulation time to be only τc ~400 ps, which is comparable to the recombination rate measured in sub-micron crystalline silicon waveguides, illustrating the strong dominance of surface recombination in similar sized (460 nm x 250 nm) a-Si:H waveguides. Consequently, a-Si:H could serve as a high performance platform for backend integrated CMOS photonics.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  2. V. F. Pavlidis and E. G. Friedman, “3-D Topologies for Networks-on-Chip,” IEEE Transactions on Very Large Scale Integration (VLSI), Systems 15, 1081–1090 (2007).
    [CrossRef]
  3. M. Petracca, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip: Opportunities and Challenges,” in IEEE International Symposium on Circuits and Systems, (ISCAS 2008), pp. 2789–2792 (2008)
  4. P. Koonath and B. Jalali, “Multilayer 3-D photonics in silicon,” Opt. Express 15(20), 12686–12691 (2007).
    [CrossRef] [PubMed]
  5. K. Preston, B. Schmidt, and M. Lipson, “Polysilicon photonic resonators for large-scale 3D integration of optical networks,” Opt. Express 15(25), 17283–17290 (2007).
    [CrossRef] [PubMed]
  6. A. Säynätjoki, J. Riikonen, and H. Lipsanen, “Optical waveguides on polysilicon-on-insulator,” J. Mat. Sci, Materials in Elect. 14(5/7), 417–420 (2003).
    [CrossRef]
  7. L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline strip waveguides: Effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
    [CrossRef]
  8. Y. C. Wang, A. K. Zaitsev, C. L. Pan, and J. M. Shieh, “New low temperature poly-silicon fabrication technique by near infrared femtosecond laser annealing,” Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThD1.
  9. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge NY 1991)
  10. G. Cocorullo, F. G. Corte, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21(24), 2002–2004 (1996).
    [CrossRef] [PubMed]
  11. A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
    [CrossRef]
  12. D. K. Sparacin, R. Sun, A. M. Agarwal, M. A. Beals, J. Michel, L. C. Kimerling, T. J. Conway, A. T. Pomerene, D. N. Carothers, M. J. Grove, D. M. Gill, M. S. Rasras, S. S. Patel, and A. E. White, “Low Loss Amorphous Silicon Channel Waveguides for Integrated Photonics,” in Group IV Photonics, 2006. 3rd IEEE International Conference on, pp. 255–257 (2006)
  13. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  14. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30(21), 2891–2893 (2005).
    [CrossRef] [PubMed]
  15. K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
    [CrossRef]
  16. D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
    [CrossRef]
  17. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]
  18. J. Tauc and Z. Vardeny, “Picosecond transient optical phenomena in a-Si:H,” Crit. Rev. Solid State Mater. Sci. 16(6), 403–416 (1990).
    [CrossRef]
  19. P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchild, and W. L. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst, Sol. 141, 76–87 (1992).
    [CrossRef]
  20. R. A. Soref and B. R. Bennet, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  21. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32(14), 2031–2033 (2007).
    [CrossRef] [PubMed]
  22. K. Ikeda, Y. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express 15(26), 17761–17771 (2007).
    [CrossRef] [PubMed]
  23. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
    [CrossRef] [PubMed]
  24. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
    [CrossRef] [PubMed]

2010

2008

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

2007

2006

2005

S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30(21), 2891–2893 (2005).
[CrossRef] [PubMed]

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[CrossRef]

2004

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

2003

A. Säynätjoki, J. Riikonen, and H. Lipsanen, “Optical waveguides on polysilicon-on-insulator,” J. Mat. Sci, Materials in Elect. 14(5/7), 417–420 (2003).
[CrossRef]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

2000

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline strip waveguides: Effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

1996

1992

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchild, and W. L. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst, Sol. 141, 76–87 (1992).
[CrossRef]

1990

J. Tauc and Z. Vardeny, “Picosecond transient optical phenomena in a-Si:H,” Crit. Rev. Solid State Mater. Sci. 16(6), 403–416 (1990).
[CrossRef]

1987

R. A. Soref and B. R. Bennet, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Agarwal, A. M.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline strip waveguides: Effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

Agrawal, G. P.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Badding, J. V.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Baril, N. F.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Bennet, B. R.

R. A. Soref and B. R. Bennet, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Calkins, J.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Cocorullo, G.

Corte, F. G.

Dong, P.

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

Duan, X.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline strip waveguides: Effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

Fainman, Y.

Fathpour, S.

Fauchet, P. M.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchild, and W. L. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst, Sol. 141, 76–87 (1992).
[CrossRef]

Friedman, E. G.

V. F. Pavlidis and E. G. Friedman, “3-D Topologies for Networks-on-Chip,” IEEE Transactions on Very Large Scale Integration (VLSI), Systems 15, 1081–1090 (2007).
[CrossRef]

Gopalan, V.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Harke, A.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[CrossRef]

Hasama, T.

Hulin, D.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchild, and W. L. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst, Sol. 141, 76–87 (1992).
[CrossRef]

Ikeda, K.

Ishikawa, H.

Jalali, B.

Kamei, T.

Kang, H.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Kawashima, H.

Kimerling, L. C.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline strip waveguides: Effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

Kintaka, K.

Koonath, P.

Krause, M.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[CrossRef]

Lee, K. K.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline strip waveguides: Effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

Liao, L.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline strip waveguides: Effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

Lim, D. R.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline strip waveguides: Effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

Lipsanen, H.

A. Säynätjoki, J. Riikonen, and H. Lipsanen, “Optical waveguides on polysilicon-on-insulator,” J. Mat. Sci, Materials in Elect. 14(5/7), 417–420 (2003).
[CrossRef]

Lipson, M.

Minarini, C.

Mori, M.

Mourchild, A.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchild, and W. L. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst, Sol. 141, 76–87 (1992).
[CrossRef]

Mueller, J.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[CrossRef]

Narayanan, K.

Nighan, W. L.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchild, and W. L. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst, Sol. 141, 76–87 (1992).
[CrossRef]

Ogasawara, T.

Okano, M.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Pavlidis, V. F.

V. F. Pavlidis and E. G. Friedman, “3-D Topologies for Networks-on-Chip,” IEEE Transactions on Very Large Scale Integration (VLSI), Systems 15, 1081–1090 (2007).
[CrossRef]

Preble, S. F.

Preston, K.

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

K. Preston, B. Schmidt, and M. Lipson, “Polysilicon photonic resonators for large-scale 3D integration of optical networks,” Opt. Express 15(25), 17283–17290 (2007).
[CrossRef] [PubMed]

Ramirez, M. O.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Rendina, I.

Riikonen, J.

A. Säynätjoki, J. Riikonen, and H. Lipsanen, “Optical waveguides on polysilicon-on-insulator,” J. Mat. Sci, Materials in Elect. 14(5/7), 417–420 (2003).
[CrossRef]

Rubino, A.

Sakakibara, Y.

Säynätjoki, A.

A. Säynätjoki, J. Riikonen, and H. Lipsanen, “Optical waveguides on polysilicon-on-insulator,” J. Mat. Sci, Materials in Elect. 14(5/7), 417–420 (2003).
[CrossRef]

Sazio, P. J. A.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Schmidt, B.

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

K. Preston, B. Schmidt, and M. Lipson, “Polysilicon photonic resonators for large-scale 3D integration of optical networks,” Opt. Express 15(25), 17283–17290 (2007).
[CrossRef] [PubMed]

Schmidt, B. S.

Shen, Y.

Shoji, Y.

Soref, R. A.

R. A. Soref and B. R. Bennet, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Suda, S.

Tauc, J.

J. Tauc and Z. Vardeny, “Picosecond transient optical phenomena in a-Si:H,” Crit. Rev. Solid State Mater. Sci. 16(6), 403–416 (1990).
[CrossRef]

Terzini, E.

Vanderhaghen, R.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchild, and W. L. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst, Sol. 141, 76–87 (1992).
[CrossRef]

Vardeny, Z.

J. Tauc and Z. Vardeny, “Picosecond transient optical phenomena in a-Si:H,” Crit. Rev. Solid State Mater. Sci. 16(6), 403–416 (1990).
[CrossRef]

Won, D. J.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Xu, Q.

Yin, L.

Appl. Phys. Lett.

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Crit. Rev. Solid State Mater. Sci.

J. Tauc and Z. Vardeny, “Picosecond transient optical phenomena in a-Si:H,” Crit. Rev. Solid State Mater. Sci. 16(6), 403–416 (1990).
[CrossRef]

Electron. Lett.

A. Harke, M. Krause, and J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1379 (2005).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref and B. R. Bennet, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

IEEE Transactions on Very Large Scale Integration (VLSI), Systems

V. F. Pavlidis and E. G. Friedman, “3-D Topologies for Networks-on-Chip,” IEEE Transactions on Very Large Scale Integration (VLSI), Systems 15, 1081–1090 (2007).
[CrossRef]

J. Electron. Mater.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline strip waveguides: Effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000).
[CrossRef]

J. Lightwave Technol.

J. Mat. Sci, Materials in Elect.

A. Säynätjoki, J. Riikonen, and H. Lipsanen, “Optical waveguides on polysilicon-on-insulator,” J. Mat. Sci, Materials in Elect. 14(5/7), 417–420 (2003).
[CrossRef]

J. Non-Cryst, Sol.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchild, and W. L. Nighan., “The properties of free carriers in amorphous silicon,” J. Non-Cryst, Sol. 141, 76–87 (1992).
[CrossRef]

Nature

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

D. K. Sparacin, R. Sun, A. M. Agarwal, M. A. Beals, J. Michel, L. C. Kimerling, T. J. Conway, A. T. Pomerene, D. N. Carothers, M. J. Grove, D. M. Gill, M. S. Rasras, S. S. Patel, and A. E. White, “Low Loss Amorphous Silicon Channel Waveguides for Integrated Photonics,” in Group IV Photonics, 2006. 3rd IEEE International Conference on, pp. 255–257 (2006)

Y. C. Wang, A. K. Zaitsev, C. L. Pan, and J. M. Shieh, “New low temperature poly-silicon fabrication technique by near infrared femtosecond laser annealing,” Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThD1.

R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge NY 1991)

M. Petracca, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip: Opportunities and Challenges,” in IEEE International Symposium on Circuits and Systems, (ISCAS 2008), pp. 2789–2792 (2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Measured response of 5 µm radius microdisc resonator fabricated on a-Si:H. The measured quality factor is Q ~92000.

Fig. 2
Fig. 2

Experimental set-up to demonstrate amplitude modulation in a-Si:H waveguides. The 405 nm pump pulses are incident on an a-Si:H waveguide to modulate the 1550 nm cw probe light. PC: Polarization Controller

Fig. 3
Fig. 3

All-optical modulation in a-Si:H using a pump-probe scheme. The carriers undergo a rapid thermalization before undergoing non-radiative recombination.

Tables (1)

Tables Icon

Table 1 PECVD deposition parameters for a-Si:H

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ=e3λ24π2c3ε0n0(1me2μe+1mh2μh)

Metrics