Abstract

Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a colorless WDM-PON incorporating a semiconductor optical amplifier (SOA) intensity modulator and a reflective SOA (RSOA) intensity modulator in the optical line termination and optical network unit, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5Gb/s. It is shown that the RB noise and crosstalk effects are dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10Gb/s downstream and 6Gb/s upstream over 40km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing in-line optical amplification and chromatic dispersion compensation. In particular, the aforementioned transmission performance can be improved to 23Gb/s downstream and 8Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
    [CrossRef]
  2. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
    [CrossRef]
  3. S. L. Woodward, P. P. Iannone, K. C. Reichmann, and N. J. Frigo, “A spectrally sliced PON employing Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 10(9), 1337–1339 (1998).
    [CrossRef]
  4. D. K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001).
    [CrossRef]
  5. H. Takesue and T. Sugie, “Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources,” J. Lightwave Technol. 21(11), 2546–2556 (2003).
    [CrossRef]
  6. W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Optical transceiver employing an RSOA with feed-forward current injection,” OFC/NFOEC, (Anaheim, CA, USA, 2007), Paper OTuH1.
  7. W. Hung, C. K. Chan, L. K. Chen, and F. Tong, “An optical networking unit for WDM access networks with downstream DPSK and upstream re-modulated OOK data using injection-locked FP laser,” OFC/NFOEC, (Anaheim, CA, USA, 2003), Paper TuR2.
  8. N. Deng, C.-K. Chan, and L.-K. Chen, “A centralized-light-source WDM access network utilizing inverse-RZ downstream signal with upstream data remodulation,” Opt. Fiber Technol. 13(1), 18–21 (2007).
    [CrossRef]
  9. J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
    [CrossRef]
  10. J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
    [CrossRef]
  11. J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17(11), 9012–9027 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-11-9012 .
    [CrossRef] [PubMed]
  12. R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009).
    [CrossRef] [PubMed]
  13. J. L. Wei, A. Hamié and J. M. Tang, “Optimization and comparison of the transmission performance of RSOA/SOA intensity-modulated optical OFDM signals for WDM-PONs,” OFC/NFOEC, (San Diego, California, USA, March 21–25, 2010). Paper JThA53.
  14. X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express 16(25), 20427–20440 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-25-20427 .
    [CrossRef] [PubMed]
  15. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei and J. M. Tang, “ Colourless real-time optical OFDM end-to-end transmission at 7.5Gb/s over 25km SSMF using 1GHz RSOAs for WDM-PONs,” OFC/NFOEC, (San Diego, California, USA, March 21–25, 2010). Paper OMS4.
  16. J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
    [CrossRef]
  17. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s for upstream transmission by remote modulation of 1 GHz RSOA using Adaptively Modulated Optical OFDM for WDM-PON single fiber architecture,” in European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), PD paper Th.3.F.1.
  18. C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express 16(16), 12096–12101 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-16-12096 .
    [CrossRef] [PubMed]
  19. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Demonstration of signal remodulation long reach carrier distributed passive optical network using OFDM-QAM signal,” in ECOC (Vienna, Austria, 2009), paper 8.5.2.
  20. P. Gysel and R. K. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8(4), 561–567 (1990).
    [CrossRef]
  21. C. Arellano, K.-D. Langer, and J. Prat, “Reflection and multiple Rayleigh backscattering in WDM single-fiber loopback access networks,” J. Lightwave Technol. 27(1), 12–18 (2009).
    [CrossRef]
  22. J. Ko, S. Kim, J. Lee, S. Won, Y. S. Kim, and J. Jeong, “Estimation of performance degradation of bidirectional WDM transmission systems due to Rayleigh backscattering and ASE noises using numerical and analytical models,” J. Lightwave Technol. 21(4), 938–946 (2003).
    [CrossRef]
  23. G. P. Agrawal, Fibre-Optic Communication Systems, (Wiley, 1997).
  24. J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
    [CrossRef]
  25. X. Tian, A. P. Freundorfer, and L. Roy, “Noise analysis of a photoreceiver using a P-I-N and GaAs HBT distributed amplifier combination,” IEEE Microw. Wirel. Compon. Lett. 13(6), 208–210 (2003).
    [CrossRef]

2009 (4)

2008 (4)

2007 (2)

N. Deng, C.-K. Chan, and L.-K. Chen, “A centralized-light-source WDM access network utilizing inverse-RZ downstream signal with upstream data remodulation,” Opt. Fiber Technol. 13(1), 18–21 (2007).
[CrossRef]

J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
[CrossRef]

2006 (1)

2003 (3)

2001 (2)

D. K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001).
[CrossRef]

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

1998 (1)

S. L. Woodward, P. P. Iannone, K. C. Reichmann, and N. J. Frigo, “A spectrally sliced PON employing Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 10(9), 1337–1339 (1998).
[CrossRef]

1990 (1)

P. Gysel and R. K. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8(4), 561–567 (1990).
[CrossRef]

Arellano, C.

Chan, C.-K.

N. Deng, C.-K. Chan, and L.-K. Chen, “A centralized-light-source WDM access network utilizing inverse-RZ downstream signal with upstream data remodulation,” Opt. Fiber Technol. 13(1), 18–21 (2007).
[CrossRef]

Chang, G.-K.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Chen, L.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Chen, L.-K.

N. Deng, C.-K. Chan, and L.-K. Chen, “A centralized-light-source WDM access network utilizing inverse-RZ downstream signal with upstream data remodulation,” Opt. Fiber Technol. 13(1), 18–21 (2007).
[CrossRef]

Chi, S.

Chow, C.-W.

Chung, Y. C.

D. K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001).
[CrossRef]

Deng, N.

N. Deng, C.-K. Chan, and L.-K. Chen, “A centralized-light-source WDM access network utilizing inverse-RZ downstream signal with upstream data remodulation,” Opt. Fiber Technol. 13(1), 18–21 (2007).
[CrossRef]

Elbers, J.-P.

K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
[CrossRef]

Ford, C.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Freundorfer, A. P.

X. Tian, A. P. Freundorfer, and L. Roy, “Noise analysis of a photoreceiver using a P-I-N and GaAs HBT distributed amplifier combination,” IEEE Microw. Wirel. Compon. Lett. 13(6), 208–210 (2003).
[CrossRef]

Frigo, N. J.

S. L. Woodward, P. P. Iannone, K. C. Reichmann, and N. J. Frigo, “A spectrally sliced PON employing Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 10(9), 1337–1339 (1998).
[CrossRef]

Giddings, R. P.

Grobe, K.

K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
[CrossRef]

Gysel, P.

P. Gysel and R. K. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8(4), 561–567 (1990).
[CrossRef]

Hamié, A.

Han, K. H.

D. K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001).
[CrossRef]

Healey, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Huang, M.-F.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Iannone, P. P.

S. L. Woodward, P. P. Iannone, K. C. Reichmann, and N. J. Frigo, “A spectrally sliced PON employing Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 10(9), 1337–1339 (1998).
[CrossRef]

Jeong, J.

Jin, X. Q.

Johnston, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Jung, D. K.

D. K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001).
[CrossRef]

Kim, H.

D. K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001).
[CrossRef]

Kim, S.

Kim, Y. S.

Ko, J.

Langer, K.-D.

Lealman, I.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Lee, J.

Moore, R.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Pan, C.-L.

Perrin, S.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Prat, J.

Qian, D.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Reichmann, K. C.

S. L. Woodward, P. P. Iannone, K. C. Reichmann, and N. J. Frigo, “A spectrally sliced PON employing Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 10(9), 1337–1339 (1998).
[CrossRef]

Rivers, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Roy, L.

X. Tian, A. P. Freundorfer, and L. Roy, “Noise analysis of a photoreceiver using a P-I-N and GaAs HBT distributed amplifier combination,” IEEE Microw. Wirel. Compon. Lett. 13(6), 208–210 (2003).
[CrossRef]

Shih, F.-Y.

Shore, K. A.

Staubli, R. K.

P. Gysel and R. K. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8(4), 561–567 (1990).
[CrossRef]

Sugie, T.

Takesue, H.

Tang, J. M.

R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009).
[CrossRef] [PubMed]

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
[CrossRef]

J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17(11), 9012–9027 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-11-9012 .
[CrossRef] [PubMed]

X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express 16(25), 20427–20440 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-25-20427 .
[CrossRef] [PubMed]

J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
[CrossRef]

J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[CrossRef]

Tian, X.

X. Tian, A. P. Freundorfer, and L. Roy, “Noise analysis of a photoreceiver using a P-I-N and GaAs HBT distributed amplifier combination,” IEEE Microw. Wirel. Compon. Lett. 13(6), 208–210 (2003).
[CrossRef]

Townley, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Townsend, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Wang, C.-H.

Wei, J. L.

Won, S.

Woodward, S. L.

S. L. Woodward, P. P. Iannone, K. C. Reichmann, and N. J. Frigo, “A spectrally sliced PON employing Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 10(9), 1337–1339 (1998).
[CrossRef]

Yang, X. L.

Yeh, C.-H.

Yu, J.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Zheng, X.

Electron. Lett. (2)

D. K. Jung, H. Kim, K. H. Han, and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electron. Lett. 37(5), 308–309 (2001).
[CrossRef]

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

IEEE Commun. Mag. (1)

K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

X. Tian, A. P. Freundorfer, and L. Roy, “Noise analysis of a photoreceiver using a P-I-N and GaAs HBT distributed amplifier combination,” IEEE Microw. Wirel. Compon. Lett. 13(6), 208–210 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. L. Woodward, P. P. Iannone, K. C. Reichmann, and N. J. Frigo, “A spectrally sliced PON employing Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 10(9), 1337–1339 (1998).
[CrossRef]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

J. Lightwave Technol. (7)

J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[CrossRef]

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
[CrossRef]

H. Takesue and T. Sugie, “Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources,” J. Lightwave Technol. 21(11), 2546–2556 (2003).
[CrossRef]

J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
[CrossRef]

P. Gysel and R. K. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8(4), 561–567 (1990).
[CrossRef]

C. Arellano, K.-D. Langer, and J. Prat, “Reflection and multiple Rayleigh backscattering in WDM single-fiber loopback access networks,” J. Lightwave Technol. 27(1), 12–18 (2009).
[CrossRef]

J. Ko, S. Kim, J. Lee, S. Won, Y. S. Kim, and J. Jeong, “Estimation of performance degradation of bidirectional WDM transmission systems due to Rayleigh backscattering and ASE noises using numerical and analytical models,” J. Lightwave Technol. 21(4), 938–946 (2003).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

N. Deng, C.-K. Chan, and L.-K. Chen, “A centralized-light-source WDM access network utilizing inverse-RZ downstream signal with upstream data remodulation,” Opt. Fiber Technol. 13(1), 18–21 (2007).
[CrossRef]

Other (7)

W. Lee, S. H. Cho, M. Y. Park, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Optical transceiver employing an RSOA with feed-forward current injection,” OFC/NFOEC, (Anaheim, CA, USA, 2007), Paper OTuH1.

W. Hung, C. K. Chan, L. K. Chen, and F. Tong, “An optical networking unit for WDM access networks with downstream DPSK and upstream re-modulated OOK data using injection-locked FP laser,” OFC/NFOEC, (Anaheim, CA, USA, 2003), Paper TuR2.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei and J. M. Tang, “ Colourless real-time optical OFDM end-to-end transmission at 7.5Gb/s over 25km SSMF using 1GHz RSOAs for WDM-PONs,” OFC/NFOEC, (San Diego, California, USA, March 21–25, 2010). Paper OMS4.

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s for upstream transmission by remote modulation of 1 GHz RSOA using Adaptively Modulated Optical OFDM for WDM-PON single fiber architecture,” in European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), PD paper Th.3.F.1.

J. L. Wei, A. Hamié and J. M. Tang, “Optimization and comparison of the transmission performance of RSOA/SOA intensity-modulated optical OFDM signals for WDM-PONs,” OFC/NFOEC, (San Diego, California, USA, March 21–25, 2010). Paper JThA53.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Demonstration of signal remodulation long reach carrier distributed passive optical network using OFDM-QAM signal,” in ECOC (Vienna, Austria, 2009), paper 8.5.2.

G. P. Agrawal, Fibre-Optic Communication Systems, (Wiley, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Wavelength-reused bidirectional transmission WDM-PON architecture with SOA intensity modulated downstream AMOOFDM signals and RSOA intensity modulated upstream AMOOFDM signals.

Fig. 2
Fig. 2

(a) Experimental setup; and (b) Measured backscattered optical power and ζ versus optical launch power for different SMF lengths.

Fig. 3
Fig. 3

RB noise power (red triangle arrow) and corresponding RB noise spectrum (blue graph).

Fig. 4
Fig. 4

Comparisons between simulation and experiment cases: (a) RSOA intensity modulator frequency response, and (b) RSOA modulated output signal spectrum.

Fig. 5
Fig. 5

Comparisons between simulation and experiment cases: (a)-(f) constellations for representative subcarriers. (a)-(c) are simulated results and (d)-(f) are experimental results.

Fig. 6
Fig. 6

Signal line rate and OSRNR of downstream AMOOFDM signals as a function of upstream launch power. The downstream launch power is fixed at 6.3dBm.

Fig. 7
Fig. 7

Upstream AMOOFDM signal line rate versus driving current PTP for various RSOA bias currents.

Fig. 8
Fig. 8

Upstream signal line rate versus driving current PTP for cases of using a centrally-supplied downstream CW optical wave and re-modulating a downstream AMOOFDM signal. For each of these two cases, numerical results obtained under conditions of including and excluding the RB noise effect are also plotted.

Fig. 9
Fig. 9

RSOA-modulated optical output waveforms for cases of using a centrally-supplied downstream CW optical wave (CASE I) and re-modulating a downstream AMOOFDM signal (CASE II).

Fig. 10
Fig. 10

Contour plot of upstream OSRNR (a) and upstream signal line rate (b) as a function of upstream and downstream launch powers.

Fig. 11
Fig. 11

Optical spectra of downstream and upstream AMOOFDM signals using the SSB-SCM technique.

Fig. 12
Fig. 12

Downstream signal line rate versus upstream launch power for SSB-SCM and conventional DSB AMOOFDM signals. The downstream launch power is fixed at 6.3dBm.

Fig. 13
Fig. 13

Upstream signal line rate versus upstream launch power for both SSB-SCM and conventional DSB AMOOFDM signals. The downstream launch power is fixed at 6.3dBm.

Tables (1)

Tables Icon

Table 1 RSOA, SOA, RB, SMF and PIN Parameters

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

PDDRB=PdownB(1e2μL)
PUDRB=ζPupgONUeμL
gONU=PupPdowneμL
OSRNRup=PupeμLPDDRB+PUDRB=gONUe2μL(1+gONU2e2μL)ζ
PDDRB'=ζPup
OSRNRdown=PdowneμLPDDRB'=1gONUζ
Rsignal=k=2Mssk=k=2MsnkTb=fsk=2Msnk2Ms(1+η)
BERT=k=2MsEnkk=2MsBitk
Rext=i=1K1A2(iΔT)|A2(jΔT)PK1j=1K1A2(jΔT)|A2(jΔT)<PK2
P=m=1K1+K2A2(mΔT)K1+K2
SSSB(t)=ADSB(t)cos(ωRFt)H{ADSB(t)}sin(ωRFt)

Metrics