Abstract

A novel method for auto-correction of fiber optic distributed temperature sensor using anti-Stokes Raman back-scattering and its reflected signal is presented. This method processes two parts of measured signal. One part is the normal back scattered anti-Stokes signal and the other part is the reflected signal which eliminate not only the effect of local losses due to the micro-bending or damages on fiber but also the differential attenuation. Because the beams of the same wavelength are used to cancel out the local variance in transmission medium there is no differential attenuation inherently. The auto correction concept was verified by the bending experiment on different bending points.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
    [CrossRef]
  2. D. L. Griscom, “gamma-ray-induced optical attenuation in Ge-doped-silica fiber image guides,” J. Appl. Phys. 78(11), 6696–6704 (1995).
    [CrossRef]
  3. C. E. Lee, “Self-calibrating technique enables long-distance temperature sensing,” Laser Focus World 43, 101–117 (2007).
  4. P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16(6), 1299–1304 (2005).
    [CrossRef]
  5. A. F. Fernandez, P. Rodeghiero, B. Brichard, F. Berghmans, A. H. Hartog, P. Hughes, K. Williams, and A. P. Leach, “Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures,” IEEE Trans. Nucl.. Sci. 52(6), 2689–2694 (2005).
    [CrossRef]
  6. K. Suh and C. Lee, “Auto-correction method for differential attenuation in a fiber-optic distributed-temperature sensor,” Opt. Lett. 33(16), 1845–1847 (2008).
    [CrossRef] [PubMed]
  7. D. A. Long, The Raman effect: a unified treatment of the theory of Raman scattering by molecules (John Wiley and Sons, 2002), p. 597.
  8. M. Höbel, J. Ricka, M. Wüthrich, and T. Binkert, “High-resolution distributed temperature sensing with the multiphoton-timing technique,” Appl. Opt. 34(16), 2955–2967 (1995).
    [CrossRef] [PubMed]
  9. M. A. Soto, P. K. Sahu, S. Faralli, G. Sacchi, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers,” in Third European Workshop on Optical Fibre Sensors, (SPIE, 2007), 66193B–66194.

2008 (1)

2007 (1)

C. E. Lee, “Self-calibrating technique enables long-distance temperature sensing,” Laser Focus World 43, 101–117 (2007).

2005 (2)

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16(6), 1299–1304 (2005).
[CrossRef]

A. F. Fernandez, P. Rodeghiero, B. Brichard, F. Berghmans, A. H. Hartog, P. Hughes, K. Williams, and A. P. Leach, “Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures,” IEEE Trans. Nucl.. Sci. 52(6), 2689–2694 (2005).
[CrossRef]

1995 (2)

1985 (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Berghmans, F.

A. F. Fernandez, P. Rodeghiero, B. Brichard, F. Berghmans, A. H. Hartog, P. Hughes, K. Williams, and A. P. Leach, “Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures,” IEEE Trans. Nucl.. Sci. 52(6), 2689–2694 (2005).
[CrossRef]

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Binkert, T.

Booth, D. J.

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16(6), 1299–1304 (2005).
[CrossRef]

Brichard, B.

A. F. Fernandez, P. Rodeghiero, B. Brichard, F. Berghmans, A. H. Hartog, P. Hughes, K. Williams, and A. P. Leach, “Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures,” IEEE Trans. Nucl.. Sci. 52(6), 2689–2694 (2005).
[CrossRef]

Cadusch, P. J.

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16(6), 1299–1304 (2005).
[CrossRef]

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Fernandez, A. F.

A. F. Fernandez, P. Rodeghiero, B. Brichard, F. Berghmans, A. H. Hartog, P. Hughes, K. Williams, and A. P. Leach, “Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures,” IEEE Trans. Nucl.. Sci. 52(6), 2689–2694 (2005).
[CrossRef]

Griscom, D. L.

D. L. Griscom, “gamma-ray-induced optical attenuation in Ge-doped-silica fiber image guides,” J. Appl. Phys. 78(11), 6696–6704 (1995).
[CrossRef]

Hartog, A. H.

A. F. Fernandez, P. Rodeghiero, B. Brichard, F. Berghmans, A. H. Hartog, P. Hughes, K. Williams, and A. P. Leach, “Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures,” IEEE Trans. Nucl.. Sci. 52(6), 2689–2694 (2005).
[CrossRef]

Höbel, M.

Hughes, P.

A. F. Fernandez, P. Rodeghiero, B. Brichard, F. Berghmans, A. H. Hartog, P. Hughes, K. Williams, and A. P. Leach, “Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures,” IEEE Trans. Nucl.. Sci. 52(6), 2689–2694 (2005).
[CrossRef]

Leach, A. P.

A. F. Fernandez, P. Rodeghiero, B. Brichard, F. Berghmans, A. H. Hartog, P. Hughes, K. Williams, and A. P. Leach, “Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures,” IEEE Trans. Nucl.. Sci. 52(6), 2689–2694 (2005).
[CrossRef]

Lee, C.

Lee, C. E.

C. E. Lee, “Self-calibrating technique enables long-distance temperature sensing,” Laser Focus World 43, 101–117 (2007).

Nagarajah, C. R.

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16(6), 1299–1304 (2005).
[CrossRef]

Pearce, J. B.

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16(6), 1299–1304 (2005).
[CrossRef]

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Ricka, J.

Rodeghiero, P.

A. F. Fernandez, P. Rodeghiero, B. Brichard, F. Berghmans, A. H. Hartog, P. Hughes, K. Williams, and A. P. Leach, “Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures,” IEEE Trans. Nucl.. Sci. 52(6), 2689–2694 (2005).
[CrossRef]

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Stoddart, P. R.

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16(6), 1299–1304 (2005).
[CrossRef]

Suh, K.

Vukovic, D.

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16(6), 1299–1304 (2005).
[CrossRef]

Williams, K.

A. F. Fernandez, P. Rodeghiero, B. Brichard, F. Berghmans, A. H. Hartog, P. Hughes, K. Williams, and A. P. Leach, “Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures,” IEEE Trans. Nucl.. Sci. 52(6), 2689–2694 (2005).
[CrossRef]

Wüthrich, M.

Appl. Opt. (1)

Electron. Lett. (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

IEEE Trans. Nucl.. Sci. (1)

A. F. Fernandez, P. Rodeghiero, B. Brichard, F. Berghmans, A. H. Hartog, P. Hughes, K. Williams, and A. P. Leach, “Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures,” IEEE Trans. Nucl.. Sci. 52(6), 2689–2694 (2005).
[CrossRef]

J. Appl. Phys. (1)

D. L. Griscom, “gamma-ray-induced optical attenuation in Ge-doped-silica fiber image guides,” J. Appl. Phys. 78(11), 6696–6704 (1995).
[CrossRef]

Laser Focus World (1)

C. E. Lee, “Self-calibrating technique enables long-distance temperature sensing,” Laser Focus World 43, 101–117 (2007).

Meas. Sci. Technol. (1)

P. R. Stoddart, P. J. Cadusch, J. B. Pearce, D. Vukovic, C. R. Nagarajah, and D. J. Booth, “Fibre optic distributed temperature sensor with an integrated background correction function,” Meas. Sci. Technol. 16(6), 1299–1304 (2005).
[CrossRef]

Opt. Lett. (1)

Other (2)

D. A. Long, The Raman effect: a unified treatment of the theory of Raman scattering by molecules (John Wiley and Sons, 2002), p. 597.

M. A. Soto, P. K. Sahu, S. Faralli, G. Sacchi, G. Bolognini, F. Di Pasquale, B. Nebendahl, and C. Rueck, “High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers,” in Third European Workshop on Optical Fibre Sensors, (SPIE, 2007), 66193B–66194.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Normal back scattered beam and reflected back scattered beam.

Fig. 2
Fig. 2

Schematics of single wavelength auto-correction experiment.

Fig. 3
Fig. 3

(a) Acquired raw signal from proposed DTS. (104 times averaging), the change of temperature profiles of 4.3km-long fiber sensor at different oven temperature for (b) full range profile, and (c) enlarged temperature profile over the 2.1km-2.35km.

Fig. 4
Fig. 4

(a) Change of acquired signal for DTS due to the bending. (b) Magnified signal of (a) near the bending point. (c) Calculated temperature.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

dσASdΩ1λAS41exp(hcΔνkBT(z))1,         dσSdΩ1λS411exp(hcΔνkBT(z)),
IAS(z,T)=P0AAS(T)exp(0zαP(z)dz0zαAS(z)dz)+C,
IS(z,T)=P0AS(T)exp(0zαP(z)dz0zαS(z)dz)+D,
R(z)=IASCIsD=exp(0zαP(z)dz0zαAS(z)dz)dσASdΩ(z)exp(0zαP(z)dz0zαS(z)dz)dσSdΩ(z).
R(z)dσASdΩ(z)/dσSdΩ(z)=λS4λAS4ehcΔνkBT(z).
T(z)=(kBhcΔνlog(R(z0)R(z))+1T(z0))1.
In(l)=P0g(l,T)exp(0lαP(z)dz0lαAS(z)dz)+C,
Ir(l)=P0RpRASg(l,T)exp(0LαP(z)dzlLαP(z)dz0LαAS(z)dzlLαAS(z)dz)+C,
If(l)=(In(l)C)(Ir(l)C)=ARg(l,T)P0
g(z,T)=If(z)ARP0.
SλAS41exp(hcΔνkBT(z))1=If(z)ARP0,
T(z)=(kBhcΔνlog(If(z0)If(z)(ehcΔνT(z0)kB1)+1))1.
In(z)=Is(t)=Is(2z/vg),
Ir(z)=Is(t)=Is(2(2Lz)/vg),

Metrics