Abstract

We present a high bandwidth piezoelectric-actuated mirror for length stabilization of an optical cavity. The actuator displays a transfer function with a flat amplitude response and greater than 135° phase margin up to 200 kHz, allowing a 180 kHz unity gain frequency to be achieved in a closed servo loop. To the best of our knowledge, this actuator has achieved the largest servo bandwidth for a piezoelectric transducer (PZT). The actuator should be very useful in a wide variety of applications requiring precision control of optical lengths, including laser frequency stabilization, optical interferometers, and optical communications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the millihertz level,” J. Opt. Soc. Am. B 5, 1576–1587 (1988).
    [CrossRef]
  2. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
    [CrossRef]
  3. M. Notcutt, L.-S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30, 1815–1817 (2005).
    [CrossRef] [PubMed]
  4. T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531–536 (2006).
    [CrossRef]
  5. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15,” Opt. Lett. 32, 641–643 (2007).
    [CrossRef] [PubMed]
  6. J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
    [CrossRef]
  7. M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
    [CrossRef] [PubMed]
  8. M. J. Thorpe, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
    [CrossRef]
  9. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [CrossRef] [PubMed]
  10. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [CrossRef] [PubMed]
  11. S. T. Cundiff, and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
    [CrossRef]
  12. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
    [CrossRef] [PubMed]
  13. P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25, 1284–1293 (2008).
    [CrossRef]
  14. M. Musha, F. L. Hong, K. Nakagawa, and K. Ueda, “Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network,” Opt. Express 16, 16459–16466 (2008).
    [CrossRef] [PubMed]
  15. O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
    [CrossRef]
  16. O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
    [CrossRef]
  17. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
    [CrossRef] [PubMed]
  18. J. L. Hall, and T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9, 502–504 (1984).
    [CrossRef] [PubMed]
  19. J. E. Debs, N. P. Robins, A. Lance, M. B. Kruger, and J. D. Close, “Piezo-locking a diode laser with saturated absorption spectroscopy,” Appl. Opt. 47, 5163–5166 (2008).
    [CrossRef] [PubMed]
  20. W. Bowen, Experiments towards a quantum information network with squeezed light and entanglement, PhD thesis, Australian National University (2003).
  21. W. Jitschin, and G. Meisel, “Fast frequency control of a cw dye jet laser,” Appl. Phys. (Berl.) 13, 181 (1979).
    [CrossRef]
  22. R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  23. G. F. Franklin, J. D. Powell, and A. Emani-Naeini, Feedback Control of Dynamic Systems (Prentice Hall, Upper Saddle River, 2006).
  24. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28, 947–949 (2003).
    [CrossRef] [PubMed]
  25. All stack PZTs used here are from Physik Instrumente (http://www.physikinstrumente.com/). Model PL033.31 was used for testing the effect of lead as presented in Fig. 2 and model PL055.31 was used to lock the Fabry-Perot cavity with a servo bandwidth of 100 kHz.
  26. We have found that Torr Seal is a good choice for permanent, high vacuum applications whereas Crystal Bond (http://www.crystalbond.com/) is well suited to applications where the mirror needs to be frequently changed.
  27. J. L. Hall, M.S. Taubman, and J. Ye, “Laser Stabilization,” OSA Handbook v14, 2001.
  28. C. C. Fuller, S. J. Elliott, and P. A. Nelson, Active Control of Vibration (Academic Press Limited, San Diego, 1997).
  29. THS6012EVMevaluation board from Texas Instruments was used as a high current driver. The output impedance was changed from 50 Ω to 5 Ω.

2010 (1)

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
[CrossRef]

2009 (1)

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

2008 (6)

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[CrossRef]

M. J. Thorpe, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25, 1284–1293 (2008).
[CrossRef]

J. E. Debs, N. P. Robins, A. Lance, M. B. Kruger, and J. D. Close, “Piezo-locking a diode laser with saturated absorption spectroscopy,” Appl. Opt. 47, 5163–5166 (2008).
[CrossRef] [PubMed]

M. Musha, F. L. Hong, K. Nakagawa, and K. Ueda, “Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network,” Opt. Express 16, 16459–16466 (2008).
[CrossRef] [PubMed]

2007 (2)

A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15,” Opt. Lett. 32, 641–643 (2007).
[CrossRef] [PubMed]

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef] [PubMed]

2006 (2)

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531–536 (2006).
[CrossRef]

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (2)

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

1999 (1)

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

1992 (1)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

1988 (1)

1984 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97 (1983).
[CrossRef]

1979 (1)

W. Jitschin, and G. Meisel, “Fast frequency control of a cw dye jet laser,” Appl. Phys. (Berl.) 13, 181 (1979).
[CrossRef]

Abramovici, A.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Alnis, J.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[CrossRef]

Althouse, W. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Amy-Klein, A.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
[CrossRef]

Bergquist, J. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Blatt, S.

Boyd, M. M.

Chardonnet, C.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
[CrossRef]

Close, J. D.

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

Cruz, F. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Cundiff, S. T.

S. T. Cundiff, and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[CrossRef]

Debs, J. E.

Drever, R. W. P.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97 (1983).
[CrossRef]

Foreman, S. M.

A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15,” Opt. Lett. 32, 641–643 (2007).
[CrossRef] [PubMed]

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef] [PubMed]

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gopinath, J. T.

Grosche, G.

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

Gürsel, Y.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Hall, J. L.

Hänsch, T. W.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[CrossRef]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

J. L. Hall, and T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9, 502–504 (1984).
[CrossRef] [PubMed]

Hils, D.

Holman, K. W.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef] [PubMed]

Holzwarth, R.

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Hong, F. L.

Hough, T.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97 (1983).
[CrossRef]

Huang, X.

Hudson, D. D.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef] [PubMed]

Ido, T.

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
[CrossRef] [PubMed]

Ippen, E. P.

Itano, W. M.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Jitschin, W.

W. Jitschin, and G. Meisel, “Fast frequency control of a cw dye jet laser,” Appl. Phys. (Berl.) 13, 181 (1979).
[CrossRef]

Jones, D. J.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef] [PubMed]

Kaertner, F. X.

Kawamura, S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Kim, J.

Kolachevsky, N.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[CrossRef]

Kolodziejski, L. A.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kruger, M. B.

Kuzucu, O.

Lance, A.

Legero, T.

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

Lipphardt, B.

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

Lopez, O.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
[CrossRef]

Lours, M.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
[CrossRef]

Ludlow, A. D.

Ma, L.-S.

Matveev, A.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[CrossRef]

Meisel, G.

W. Jitschin, and G. Meisel, “Fast frequency control of a cw dye jet laser,” Appl. Phys. (Berl.) 13, 181 (1979).
[CrossRef]

Munley, A. G.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97 (1983).
[CrossRef]

Musha, M.

Nakagawa, K.

Nazarova, T.

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531–536 (2006).
[CrossRef]

Newbury, N. R.

P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25, 1284–1293 (2008).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

Notcutt, M.

Petrich, G. S.

Predehl, K.

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

Raab, F. J.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Riehle, F.

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531–536 (2006).
[CrossRef]

Robins, N. P.

Salomon, C.

Santarelli, G.

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
[CrossRef]

Schibli, T. R.

Schnatz, H.

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

Shoemaker, D.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Sievers, L.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Spero, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Sterr, U.

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531–536 (2006).
[CrossRef]

Swann, W. C.

P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25, 1284–1293 (2008).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

Tandon, S. N.

Terra, O.

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

Thorne, K. S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Thorpe, M. J.

M. J. Thorpe, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[CrossRef]

Udem, T.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[CrossRef]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Ueda, K.

Vogt, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97 (1983).
[CrossRef]

Weiss, R.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Whitcomb, S. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Williams, P. A.

Ye, J.

M. J. Thorpe, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[CrossRef]

A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15,” Opt. Lett. 32, 641–643 (2007).
[CrossRef] [PubMed]

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef] [PubMed]

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
[CrossRef] [PubMed]

M. Notcutt, L.-S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30, 1815–1817 (2005).
[CrossRef] [PubMed]

S. T. Cundiff, and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[CrossRef]

Young, B. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Zanon-Willette, T.

Zelevinsky, T.

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
[CrossRef] [PubMed]

Zucker, M. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

W. Jitschin, and G. Meisel, “Fast frequency control of a cw dye jet laser,” Appl. Phys. (Berl.) 13, 181 (1979).
[CrossRef]

Appl. Phys. B (5)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97 (1983).
[CrossRef]

M. J. Thorpe, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[CrossRef]

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531–536 (2006).
[CrossRef]

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009).
[CrossRef]

O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98, 723–727 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Rev. Mod. Phys. (1)

S. T. Cundiff, and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef] [PubMed]

Science (2)

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
[CrossRef] [PubMed]

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Other (7)

W. Bowen, Experiments towards a quantum information network with squeezed light and entanglement, PhD thesis, Australian National University (2003).

G. F. Franklin, J. D. Powell, and A. Emani-Naeini, Feedback Control of Dynamic Systems (Prentice Hall, Upper Saddle River, 2006).

All stack PZTs used here are from Physik Instrumente (http://www.physikinstrumente.com/). Model PL033.31 was used for testing the effect of lead as presented in Fig. 2 and model PL055.31 was used to lock the Fabry-Perot cavity with a servo bandwidth of 100 kHz.

We have found that Torr Seal is a good choice for permanent, high vacuum applications whereas Crystal Bond (http://www.crystalbond.com/) is well suited to applications where the mirror needs to be frequently changed.

J. L. Hall, M.S. Taubman, and J. Ye, “Laser Stabilization,” OSA Handbook v14, 2001.

C. C. Fuller, S. J. Elliott, and P. A. Nelson, Active Control of Vibration (Academic Press Limited, San Diego, 1997).

THS6012EVMevaluation board from Texas Instruments was used as a high current driver. The output impedance was changed from 50 Ω to 5 Ω.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the PZT mounting structure that was used for the experiments described here. Dimensions are in inches. (b) A photograph of the actuator in a mirror mount.

Fig. 2.
Fig. 2.

Amplitude transfer functions for PZT actuators measured with a Michelson interferometer. The actuators were constructed with a stack PZT [25] and a rectangular mirror of the same size mounted on a (bottom curve) copper mount of the same size as described in Fig. 1 and (top curve) the same mount filled with lead. The two curves have been offset for clarity.

Fig. 3.
Fig. 3.

The frequency-dependent impedance measured with a network analyzer for a commercial HV PZT with both electrodes intact (a) and the same PZT that has had the ground electrode removed and the surface roughed up with an abrasive (b).

Fig. 4.
Fig. 4.

Interferometric measurement of phase responses for an actuator built with a commercial PZT (0.1 in. thick) and one that has been cut with a diamond saw (0.07 in. thick).

Fig. 5.
Fig. 5.

Transfer function measured with a Michelson interferometer for ~ 1 mm thick HV PZT disk and ~1 mm thick mirror on the lead-filled copper mount presented in Fig 1.

Fig. 6.
Fig. 6.

The converted frequency noise power spectral density of the in-Loop error signal for PDH lock with the PZT described in Fig. 5. In the unlocked case the cavity was manually held on resonance. Panel (a) a full frequency span 0 – 500 kHz, (b) zoomed-in to 50 kHz.

Metrics