Abstract

We investigate experimentally the transmission properties of single sub-wavelength coaxial apertures in thin metal films (t = 110 nm). Enhanced transmission through a single sub-wavelength coaxial aperture illuminated with a strongly focused radially polarized light beam is reported. In our experiments we achieved up to four times enhanced transmission through a single coaxial aperture as compared to a (hollow) circular aperture with the same outer diameter. We attribute this enhancement of transmission to the excitation of a TEM-mode for illumination with radially polarized light inside the single coaxial aperture. A strong polarization contrast is observed between the transmission for radially and azimuthally polarized illumination. Furthermore, the observed transmission through a single coaxial aperture can be strongly reduced if surface plasmons are excited. The experimental results are in good agreement with finite difference time domain (FDTD) simulations.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef] [PubMed]
  3. J. Olkkonen, K. Kataja, and D. G. Howe, “Light transmission through a high index dielectric-filled subwavelength hole in a metal film,” Opt. Express 13, 6880–6889 (2005).
    [CrossRef] [PubMed]
  4. E. Popov, N. Bonod, M. Neviere, H. Rigneault, P. F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 44, 2332–2337 (2005).
    [CrossRef] [PubMed]
  5. J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 064401 (2009).
    [CrossRef]
  6. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  7. J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
    [CrossRef]
  8. F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
    [CrossRef]
  9. J. Salvi, M. Roussey, F. I. Baida, M. P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, “Annular aperture arrays: study in the visible region of the electromagnetic spectrum,” Opt. Lett. 30, 1611–1613 (2005).
    [CrossRef] [PubMed]
  10. M. Stalder, and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
    [CrossRef] [PubMed]
  11. R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]

2009 (1)

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 064401 (2009).
[CrossRef]

2007 (1)

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
[CrossRef]

2005 (3)

2004 (1)

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[CrossRef]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

2001 (1)

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1996 (1)

Baida, F. I.

J. Salvi, M. Roussey, F. I. Baida, M. P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, “Annular aperture arrays: study in the visible region of the electromagnetic spectrum,” Opt. Lett. 30, 1611–1613 (2005).
[CrossRef] [PubMed]

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[CrossRef]

Banzer, P.

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
[CrossRef]

Belkhir, A.

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[CrossRef]

Bernal, M. P.

Bonod, N.

Chaumet, P.

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Dwir, B.

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

García-Vidal, F. J.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Granet, G.

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[CrossRef]

Hoffmann, P.

Howe, D. G.

J. Olkkonen, K. Kataja, and D. G. Howe, “Light transmission through a high index dielectric-filled subwavelength hole in a metal film,” Opt. Express 13, 6880–6889 (2005).
[CrossRef] [PubMed]

Kataja, K.

J. Olkkonen, K. Kataja, and D. G. Howe, “Light transmission through a high index dielectric-filled subwavelength hole in a metal film,” Opt. Express 13, 6880–6889 (2005).
[CrossRef] [PubMed]

Kindler, J.

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
[CrossRef]

Lenne, P. F.

Leuchs, G.

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Maillotte, H.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Moreau, A.

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[CrossRef]

Mussot, A.

Neviere, M.

Olkkonen, J.

J. Olkkonen, K. Kataja, and D. G. Howe, “Light transmission through a high index dielectric-filled subwavelength hole in a metal film,” Opt. Express 13, 6880–6889 (2005).
[CrossRef] [PubMed]

Pellerin, K. M.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Perentes, A.

Peschel, U.

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
[CrossRef]

Popov, E.

Quabis, S.

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Rigneault, H.

Roussey, M.

Salvi, J.

Sandu, C.

Schadt, M.

Stalder, M.

Sylvestre, T.

Thio, T.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Utke, I.

Van Labeke, D.

J. Salvi, M. Roussey, F. I. Baida, M. P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann, and B. Dwir, “Annular aperture arrays: study in the visible region of the electromagnetic spectrum,” Opt. Lett. 30, 1611–1613 (2005).
[CrossRef] [PubMed]

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[CrossRef]

Weiner, J.

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 064401 (2009).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007).
[CrossRef]

F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Express (1)

J. Olkkonen, K. Kataja, and D. G. Howe, “Light transmission through a high index dielectric-filled subwavelength hole in a metal film,” Opt. Express 13, 6880–6889 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 064401 (2009).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Experimental setup for investigating the transmission properties of single circular hollow and coaxial nano-apertures. PMF: polarization-maintaining fiber; P: polarizer; HWP: half-wave plate; LC: liquid-crystal polarization converter; NCFPI: non-confocal Fabry-Pérot interferometer; M: mirrors; MO: microscope objective with an NA of 0.9; PD: photodiode. (b) SEM images showing the investigated aperture types (top view). Left: hollow circular aperture with diameter d. Right: coaxial aperture with an outer diameter of d and an inner diameter of din = 0.75 · d. The apertures were patterned into a silver film with a thickness of 110 nm fabricated using standard focused-ion-beam technique (on a 170 μm thick glass substrate). c) 2D scan image showing the intensity of the totally transmitted light for different positions of a coaxial aperture (d = 700 nm) relative to the beam within the focal plane of highly focused radially polarized light (white: high transmission; black: low transmission). The sketches on the right hand side represent the corresponding cases of on-axis (top) and off-axis (bottom) illumination by a highly focused radially polarized beam overlapping with a coaxial aperture in the focal plane (transverse electric field components are shown only).

Fig. 2.
Fig. 2.

Experimental and numerical results for on-axis illumination with strongly focused (a) radially and (b) azimuthally polarized light at a wavelength of 775 nm (experimental results for coaxial aperture (blue rings) and hollow apertures (solid red circles); FDTD simulations for coaxial apertures (dashed blue line) and hollow apertures (solid red line)). The diameter of the inner rod of the coaxial apertures is din = 0.75 · d. The normalized transmission is plotted against the outer diameter d of the apertures.

Fig. 3.
Fig. 3.

Normalized transmission plotted against the relative diameter (din/d) of the inner metal rod of a coaxial aperture for on-axis illumination with a strongly focused radially polarized beam. The wavelength was fixed to 775 nm and the outer diameter of the apertures was set to 400 nm. The silver film thickness was 110 nm. FDTD simulation: solid black line. Experimental results achieved for the cases din = 0, din = 0.5 · d and din = 0.75 · d are also depicted (red triangles).

Fig. 4.
Fig. 4.

Experimental and numerical results for on-axis illumination with strongly focused radially polarized light at a wavelength of 532 nm (experimental results for coaxial apertures (blue rings) and hollow apertures (solid red circles); FDTD simulations for coaxial apertures (dashed blue line) and hollow apertures (solid red line)). The diameter of the inner rod of the coaxial apertures is set to din = 0.75 · d. The normalized transmission is plotted against the outer diameter d of the apertures. The parameters for the silver film in the simulations were ωp = 9.0 fs-1 and Γ = 0 fs-1.

Fig. 5.
Fig. 5.

FDTD simulations showing the absolute value of the Poynting vector for on-axis illumination with a strongly focused radially polarized beam (beam propagates from left to right, from air to glass to Si - note the corresponding change in wavelength). The strongly focused radially polarized beam is impinging from air onto the metal film with a thickness of 110nm (z-direction). The gray area in the first image represents the metal layer. Behind the metal layer the transmitted light passes through the glass substrate (n = 1.5) into a PD (n = 3.6). Both a hollow aperture with a diameter d = 560 nm a) and a coaxial aperture with the same outer diameter and di = 420 nm b) are shown, respectively. The results are presented for a wavelength of 775 nm (left column) and 532 nm (central column). The inset on the right hand side in b) represents a magnified image section, showing part of the wave impinging on the metal film (wavelength: λ = 532 nm) and the surface plasmon wave along the metal-glass interface (wavelength: λP = 270 nm).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λP=λ·[(εr+εs)/(εs·εr)]1/2
εr=1[ωp2/(ω2Γ2)].

Metrics