Abstract

We theoretically show that a weakly-focused radially polarized beam can excite surface-plasmon-polaritons in metal nanowires and nanocones with efficiencies of the order of 90% and large bandwidths. The coupling mechanism relies on the formation of a standing wave on the nanowire facet, which imposes a relationship between the operating wavelength and the nanowire radius. An immediate application of this finding is nanofocusing of optical energy for implementations of ultra-fast and high-throughput linear and nonlinear nanoscopies, optical nanolithographies, quantum nano-optics and photochemistry at the nanoscale.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995).
    [CrossRef] [PubMed]
  2. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001).
    [CrossRef] [PubMed]
  3. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef] [PubMed]
  4. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
    [CrossRef]
  5. F. Keilmann, “Surface-polariton propagation for scanning near-field optical microscopy application,” J. Microsc. 194, 567–570 (1999).
    [CrossRef]
  6. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
    [CrossRef]
  7. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  8. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
    [CrossRef]
  9. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
    [CrossRef] [PubMed]
  10. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. 47, 8178–8191 (2008).
    [CrossRef]
  11. S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
    [CrossRef]
  12. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
    [CrossRef] [PubMed]
  13. G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025–2027 (2004).
    [CrossRef]
  14. X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9, 3756–3761 (2009).
    [CrossRef] [PubMed]
  15. M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
    [CrossRef]
  16. R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
    [CrossRef]
  17. K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
    [CrossRef]
  18. E. G. Bortchagovsky, S. Klein, and U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94, 063118 (2009).
    [CrossRef]
  19. A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005).
    [CrossRef]
  20. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
    [CrossRef] [PubMed]
  21. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
    [CrossRef] [PubMed]
  22. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
  23. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005).
    [CrossRef]
  24. M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
    [CrossRef]
  25. T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal dielectric probe,” Opt. Express 17, 9191–9196 (2009).
    [CrossRef] [PubMed]
  26. F. I. Baida, and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
    [CrossRef]
  27. M. Agio, X.-W. Chen, and V. Sandoghdar, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy,” (2010), US Patent Pending.
  28. N. A. Issa, and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 31–37 (2007).
    [CrossRef]
  29. M. W. Vogel, and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363, 507–511 (2007).
    [CrossRef]
  30. A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
    [CrossRef]
  31. A. V. Goncharenko, J.-K. Wang, and Y.-C. Chang, “Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence,” Phys. Rev. B 74, 235442 (2006).
    [CrossRef]
  32. A. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
    [CrossRef]
  33. Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
    [CrossRef] [PubMed]
  34. R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009).
    [CrossRef]
  35. D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2006), 87th Ed.
  36. B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
    [CrossRef]
  37. N. M. Mojarad, and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams,” Opt. Express 17, 117–122 (2009).
    [CrossRef] [PubMed]
  38. H. Ling, and S.-W. Lee, “Focusing of electromagnetic waves through a dielectric interface,” J. Opt. Soc. Am. A 1, 965–973 (1984).
    [CrossRef]
  39. I. M. Bassett, “Limit to concentration by focusing,” J. Mod. Opt. 33, 279–286 (1986).
  40. E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
    [CrossRef] [PubMed]
  41. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
    [CrossRef]
  42. M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
    [CrossRef]
  43. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2005), 3rd Ed.
  44. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999), 3rd Ed.

2010

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

2009

E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

F. I. Baida, and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
[CrossRef]

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9, 3756–3761 (2009).
[CrossRef] [PubMed]

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

E. G. Bortchagovsky, S. Klein, and U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94, 063118 (2009).
[CrossRef]

N. M. Mojarad, and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams,” Opt. Express 17, 117–122 (2009).
[CrossRef] [PubMed]

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal dielectric probe,” Opt. Express 17, 9191–9196 (2009).
[CrossRef] [PubMed]

R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009).
[CrossRef]

2008

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. 47, 8178–8191 (2008).
[CrossRef]

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

2007

A. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

N. A. Issa, and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 31–37 (2007).
[CrossRef]

M. W. Vogel, and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363, 507–511 (2007).
[CrossRef]

2006

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

A. V. Goncharenko, J.-K. Wang, and Y.-C. Chang, “Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence,” Phys. Rev. B 74, 235442 (2006).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

2005

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005).
[CrossRef]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005).
[CrossRef]

2004

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025–2027 (2004).
[CrossRef]

2001

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

2000

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

1999

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

F. Keilmann, “Surface-polariton propagation for scanning near-field optical microscopy application,” J. Microsc. 194, 567–570 (1999).
[CrossRef]

1995

1986

I. M. Bassett, “Limit to concentration by focusing,” J. Mod. Opt. 33, 279–286 (1986).

1984

1959

B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Adam, P.-M.

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Aeschimann, L.

Agio, M.

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9, 3756–3761 (2009).
[CrossRef] [PubMed]

N. M. Mojarad, and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams,” Opt. Express 17, 117–122 (2009).
[CrossRef] [PubMed]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Allegrini, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Andreani, L. C.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Antosiewicz, T. J.

Babadjanyan, A. J.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

Baida, F. I.

F. I. Baida, and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
[CrossRef]

Bassett, I. M.

I. M. Bassett, “Limit to concentration by focusing,” J. Mod. Opt. 33, 279–286 (1986).

Bäuerle, D.

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025–2027 (2004).
[CrossRef]

Bek, A.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

Belkhir, A.

F. I. Baida, and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
[CrossRef]

Biagioni, P.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Bortchagovsky, E. G.

E. G. Bortchagovsky, S. Klein, and U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94, 063118 (2009).
[CrossRef]

Bräuchle, C.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Braun, K.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Brotosudarmo, T. H. P.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Burr, G.

K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Businaro, L.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Candeloro, P.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

Celebrano, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Cerullo, G.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Chang, D. E.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Chang, H.-C.

A. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[CrossRef]

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

Chang, Y.-C.

A. V. Goncharenko, J.-K. Wang, and Y.-C. Chang, “Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence,” Phys. Rev. B 74, 235442 (2006).
[CrossRef]

Chen, X.-W.

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9, 3756–3761 (2009).
[CrossRef] [PubMed]

Das, G.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

De Angelis, F.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

de Rooij, N. F.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Dechant, A.

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005).
[CrossRef]

Descrovi, E.

Dew, S. K.

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005).
[CrossRef]

Di Fabrizio, E.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Duò, L.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Dvoynenko, M. M.

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Eckert, R.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Eisler, H.-J.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Elezzabi, A. Y.

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005).
[CrossRef]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Fang, Y.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Finazzi, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Fischer, U.

K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Fischer, U. C.

E. G. Bortchagovsky, S. Klein, and U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94, 063118 (2009).
[CrossRef]

Fleischer, M.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Freyland, J. M.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Galli, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Gersen, H.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Goncharenko, A.

A. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[CrossRef]

Goncharenko, A. V.

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

A. V. Goncharenko, J.-K. Wang, and Y.-C. Chang, “Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence,” Phys. Rev. B 74, 235442 (2006).
[CrossRef]

Gordon, R.

Govorov, A. O.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Gramotnev, D. K.

M. W. Vogel, and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363, 507–511 (2007).
[CrossRef]

Grand, J.

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Grosjean, T.

K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Guckenberger, R.

N. A. Issa, and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 31–37 (2007).
[CrossRef]

Häffner, M.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Hao, F.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

Hartschuh, A.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. 47, 8178–8191 (2008).
[CrossRef]

Harutyunyan, H.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Hayazawa, N.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Hecht, B.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995).
[CrossRef] [PubMed]

Heeren, A.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Heinzelmann, H.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Heitz, J.

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025–2027 (2004).
[CrossRef]

Hemmer, P. R.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Herzig, H.-P.

Huang, Y.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Irvine, S. E.

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005).
[CrossRef]

Issa, N. A.

N. A. Issa, and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 31–37 (2007).
[CrossRef]

Kalkbrenner, T.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001).
[CrossRef] [PubMed]

Kawata, S.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Keilmann, F.

F. Keilmann, “Surface-polariton propagation for scanning near-field optical microscopy application,” J. Microsc. 194, 567–570 (1999).
[CrossRef]

Kern, D. P.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Klein, S.

E. G. Bortchagovsky, S. Klein, and U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94, 063118 (2009).
[CrossRef]

Kuipers, L.

E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Labardi, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Lazzarino, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

Lee, S.-W.

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Li, Z.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

Liberale, C.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Ling, H.

Lukin, M. D.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Mackowski, S.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Maier, A. J.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Maksymov, I.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Maletzky, T.

K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Margaryan, N. L.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

Meixner, A. J.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001).
[CrossRef] [PubMed]

Mojarad, N. M.

Nakagawa, W.

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Nerkararyan, K. V.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

Noell, W.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Nordlander, P.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

Novotny, L.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995).
[CrossRef] [PubMed]

Patrini, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995).
[CrossRef] [PubMed]

Polli, D.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Polman, A.

E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001).
[CrossRef] [PubMed]

Raschke, M. B.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Richards, B.

B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Sánchez, E. J.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Sandoghdar, V.

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9, 3756–3761 (2009).
[CrossRef] [PubMed]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001).
[CrossRef] [PubMed]

Scheer, H.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Schürmann, G.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Spasenovic, M.

E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Stade, F.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Stadler, J.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Stanciu, C.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Staufer, U.

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Szoplik, T.

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

Tanaka, K.

K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Vaccaro, L.

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

Verhagen, E.

E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Vogel, M. W.

M. W. Vogel, and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363, 507–511 (2007).
[CrossRef]

Wang, J.-K.

A. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[CrossRef]

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

A. V. Goncharenko, J.-K. Wang, and Y.-C. Chang, “Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence,” Phys. Rev. B 74, 235442 (2006).
[CrossRef]

Wolf, E.

B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Wörmke, S.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Wróbel, P.

Wysocki, G.

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025–2027 (2004).
[CrossRef]

Xie, X. S.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Xu, H.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

Zavelani-Rossi, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Angew. Chem. Int. Ed.

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. 47, 8178–8191 (2008).
[CrossRef]

Appl. Phys. B

K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Appl. Phys. Lett.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

E. G. Bortchagovsky, S. Klein, and U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94, 063118 (2009).
[CrossRef]

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005).
[CrossRef]

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025–2027 (2004).
[CrossRef]

J. Appl. Phys.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

J. Microsc.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001).
[CrossRef] [PubMed]

F. Keilmann, “Surface-polariton propagation for scanning near-field optical microscopy application,” J. Microsc. 194, 567–570 (1999).
[CrossRef]

J. Mod. Opt.

I. M. Bassett, “Limit to concentration by focusing,” J. Mod. Opt. 33, 279–286 (1986).

J. Opt. Soc. Am. A

N. J. Phys.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

Nano Lett.

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9, 3756–3761 (2009).
[CrossRef] [PubMed]

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

Nat. Nano.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

M. W. Vogel, and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363, 507–511 (2007).
[CrossRef]

Phys. Rev. B

A. V. Goncharenko, J.-K. Wang, and Y.-C. Chang, “Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence,” Phys. Rev. B 74, 235442 (2006).
[CrossRef]

Phys. Rev. Lett.

E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Plasmonics

N. A. Issa, and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 31–37 (2007).
[CrossRef]

F. I. Baida, and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
[CrossRef]

Proc. R. Soc. A

B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Rev. Sci. Instrum.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

Ultramicroscopy

A. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[CrossRef]

Other

M. Agio, X.-W. Chen, and V. Sandoghdar, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy,” (2010), US Patent Pending.

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2005), 3rd Ed.

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999), 3rd Ed.

D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2006), 87th Ed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Layout of a semi-infinite gold NW in air on a glass substrate. The dashed lines delimit the computational domain of BOR-FDTD. (b) Reflection as a function of the NW radius for different metals and substrates. (c) and (d) Time-averaged magnetic field for a gold NW on glass (n = 1.5) with r = 160 nm and r = 340 nm, respectively. In (b)–(d) the vacuum wavelength is 633 nm. In (a), (c) and (d) the solid red lines indicate the source position.

Fig. 2.
Fig. 2.

(a) Matching the NW radiation pattern with a FRB. A radially-polarized beam (RB) is focused by an aplanatic lens onto the NW. The filled red curves sketch the intensity profile of a RB and the reference plane represents the integration domain used for the near-to-far-field transformation of the field radiated by the SPPs. (b)–(e) The electric field E of the FRB on the Gaussian reference sphere (GRS) can match that radiated from the NW if the RB is adjusted by varying a = f/w, where f is the lens focal length and w is the beam waist. E of the FRB (black solid curves) and the NW (red dots) on the GRS are displayed for different parameters. The vacuum wavelength is λ = 633 nm, f = 1.8 mm and a = 90°.

Fig. 3.
Fig. 3.

(a) Time-averaged magnetic field for a FRB in an infinite glass background (a = 3.1, n = 1.5). (b) Coupling efficiency as a function of the NW position with respect to the focal spot. (c) Coupling efficiency as a function of the NW radius, when the NW position is 100 nm. (d) BOR-FDTD simulation for a FRB incident on a gold NW on glass with r = 160 nm. The beam parameter is a = 3.1 and the focal spot is 100 nm before the NW facet. The white lines sketch the position of the substrate and the NW for the coupling problem. In (a) and (d) the z coordinate is with respect to the focal spot and the vertical red lines indicate the source position.

Fig. 4.
Fig. 4.

(a) Scheme of a cantilever-based high-throughput SNOM. (b) Normalized energy density W in a plane located at z = 1115 nm from the cantilever when a gold cone is illuminated by a FRB under the same conditions of Fig. 3(d) (see text for details). The plane is 5 nm from the cone tip. The graph shows also W for various z when the cone is not present. (c) Zoom of (b) for the case where a gold cone is present. The contributions to W due to the two electric field components Ez and Eρ are indicated as WEz and W, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E(ρ)=ρ̂ Eo exp (ρ2/(2w2))ρ/w,
E(a,θ)=Eoexp(a2sin2θ/2)asinθcosθθ̂ ,
E(ρ,z)=Eρ (ρ,z)ρ̂ +Ez(ρ,z)ẑ , H(ρ,z)=Hϕ (ρ,z)ϕ̂ .
E(r,θ)=keikr2reikzocosθ 0ρmax d ρρ J1 (sinθ)(Eρ(ρ,zo)+ZHϕ(ρ,zo)cosθ)θ̂ .

Metrics