Abstract

We demonstrate an elliptically symmetric plasmonic lens that is illuminated by a radially-like polarization field. This illumination function is TM polarized with regard to the plasmonic lens, ensuring optimum coupling of the incident light into surface plasmons polaritons. The structure is analyzed theoretically by using the Green function approach, and a finite difference time domain simulation. Both approaches provide similar results. Specifically we calculate and experimentally measure the field distribution on the surface and a few microns above it. The results show strong dependency of the electric field distribution on the eccentricity of the elliptic structure and the illumination wavelength. The interference of surface plasmons generates a structured pattern consisting of distinct peaks distributed inside the ellipse with locations that are wavelength dependent. This pattern can be used in several applications including structured illumination microscopy, particles beam trapping and sensing.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [CrossRef] [PubMed]
  2. W. Chen and Q. Zhan, “Optimal plasmonic focusing with radial polarization,” Proc. SPIE 6450, 64500D (2007).
    [CrossRef]
  3. A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17(2), 924–932 (2009).
    [CrossRef] [PubMed]
  4. A. Yanai and U. Levy, “The role of short and long range surface plasmons for plasmonic focusing applications,” Opt. Express 17(16), 14270–14280 (2009).
    [CrossRef] [PubMed]
  5. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
    [CrossRef] [PubMed]
  6. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
    [CrossRef] [PubMed]
  7. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [CrossRef] [PubMed]
  8. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  9. U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29(15), 1718–1720 (2004).
    [CrossRef] [PubMed]
  10. I. Richter, P. C. Sun, F. Xu, and Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34(14), 2421–2429 (1995).
    [CrossRef] [PubMed]
  11. A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
    [CrossRef]
  12. M. Born, and E. Wolf, Principles of Optics (Pergamon press, 1980).
  13. P. M. Morse, and H. Feshbach, Methods of Theoretical Physics, (McGraw-Hill, 1953).
  14. S. H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
    [CrossRef] [PubMed]
  15. L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
    [CrossRef] [PubMed]
  16. S. Liu, C. J. Chuang, C. W. See, G. Zoriniants, W. L. Barnes, and M. G. Somekh, “Double-grating-structured light microscopy using plasmonic nanoparticle arrays,” Opt. Lett. 34(8), 1255–1257 (2009).
    [CrossRef] [PubMed]
  17. G. M. Lerman and U. Levy, “Tight focusing of space variant vector optical fields with no cylindrical symmetry of polarization,” Opt. Lett. 32, 2194–2196 (2007).
    [CrossRef] [PubMed]
  18. G. M. Lerman, Y. Lilach, and U. Levy, “Demonstration of spatially inhomogeneous vector beams with elliptical symmetry,” Opt. Lett. 34(11), 1669–1671 (2009).
    [CrossRef] [PubMed]
  19. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
    [CrossRef]
  20. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15(11), 6762–6767 (2007).
    [CrossRef] [PubMed]
  21. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [CrossRef]
  22. T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: effect on image structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046611 (2003).
    [CrossRef] [PubMed]
  23. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
    [CrossRef] [PubMed]
  24. H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, “Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits,” Appl. Phys. Lett. 94(14), 141102 (2009).
    [CrossRef]

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

2009 (7)

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, “Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits,” Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17(2), 924–932 (2009).
[CrossRef] [PubMed]

S. Liu, C. J. Chuang, C. W. See, G. Zoriniants, W. L. Barnes, and M. G. Somekh, “Double-grating-structured light microscopy using plasmonic nanoparticle arrays,” Opt. Lett. 34(8), 1255–1257 (2009).
[CrossRef] [PubMed]

G. M. Lerman, Y. Lilach, and U. Levy, “Demonstration of spatially inhomogeneous vector beams with elliptical symmetry,” Opt. Lett. 34(11), 1669–1671 (2009).
[CrossRef] [PubMed]

A. Yanai and U. Levy, “The role of short and long range surface plasmons for plasmonic focusing applications,” Opt. Express 17(16), 14270–14280 (2009).
[CrossRef] [PubMed]

2008 (1)

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[CrossRef] [PubMed]

2007 (4)

W. Chen and Q. Zhan, “Optimal plasmonic focusing with radial polarization,” Proc. SPIE 6450, 64500D (2007).
[CrossRef]

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15(11), 6762–6767 (2007).
[CrossRef] [PubMed]

G. M. Lerman and U. Levy, “Tight focusing of space variant vector optical fields with no cylindrical symmetry of polarization,” Opt. Lett. 32, 2194–2196 (2007).
[CrossRef] [PubMed]

2005 (4)

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[CrossRef]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef]

S. H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: effect on image structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046611 (2003).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

2000 (1)

1995 (1)

Abeysinghe, D. C.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Agard, D. A.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[CrossRef] [PubMed]

Ahn, K. J.

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, “Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits,” Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

Aigouy, L.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Aussenegg, F. R.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[CrossRef]

Barnes, W. L.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Brown, T. G.

Burke, B.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[CrossRef] [PubMed]

Cardoso, M. C.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[CrossRef] [PubMed]

Carlton, P. M.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[CrossRef] [PubMed]

Chang, S. H.

Chen, W.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

W. Chen and Q. Zhan, “Optimal plasmonic focusing with radial polarization,” Proc. SPIE 6450, 64500D (2007).
[CrossRef]

Chuang, C. J.

Courjon, D.

T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: effect on image structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046611 (2003).
[CrossRef] [PubMed]

Ditlbacher, H.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Drezet, A.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[CrossRef]

Fainman, Y.

Ginzburg, P.

Gray, S. K.

Grosjean, T.

T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: effect on image structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046611 (2003).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[CrossRef] [PubMed]

Haase, S.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[CrossRef] [PubMed]

Hohenau, A.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[CrossRef]

Hugonin, J. P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Julié, G.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Kang, J. H.

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, “Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits,” Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

Kihm, H. W.

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, “Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits,” Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

Kner, P.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[CrossRef] [PubMed]

Krenn, J. R.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[CrossRef]

Kyoung, J. S.

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, “Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits,” Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

Lalanne, P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef]

Lee, K. G.

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, “Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits,” Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

Leitner, A.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[CrossRef]

Leonhardt, H.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[CrossRef] [PubMed]

Lerman, G. M.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Levy, U.

Lilach, Y.

Liu, S.

Liu, Z. W.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Mathet, V.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Mortier, M.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Nelson, R. L.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Orenstein, M.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Pang, L.

Pikus, Y.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Richter, I.

Rodier, J. C.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Schatz, G. C.

Schermelleh, L.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[CrossRef] [PubMed]

Sedat, J. W.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[CrossRef] [PubMed]

See, C. W.

Seo, M. A.

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, “Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits,” Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

Shao, L.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[CrossRef] [PubMed]

Somekh, M. G.

Srituravanich, W.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Steele, J. M.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Steinberger, B.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[CrossRef]

Stepanov, A. L.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[CrossRef]

Sun, C.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Sun, P. C.

Tsai, C. H.

Winoto, L.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[CrossRef] [PubMed]

Xu, F.

Yanai, A.

Youngworth, K. S.

Zhan, Q.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

W. Chen and Q. Zhan, “Optimal plasmonic focusing with radial polarization,” Proc. SPIE 6450, 64500D (2007).
[CrossRef]

Zhang, X.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Zoriniants, G.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, “Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits,” Appl. Phys. Lett. 94(14), 141102 (2009).
[CrossRef]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Nano Lett. (3)

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: effect on image structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046611 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef]

Proc. SPIE (1)

W. Chen and Q. Zhan, “Optimal plasmonic focusing with radial polarization,” Proc. SPIE 6450, 64500D (2007).
[CrossRef]

Science (1)

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008).
[CrossRef] [PubMed]

Other (2)

M. Born, and E. Wolf, Principles of Optics (Pergamon press, 1980).

P. M. Morse, and H. Feshbach, Methods of Theoretical Physics, (McGraw-Hill, 1953).

Supplementary Material (1)

» Media 1: MPG (856 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A schematic drawing of the EPL illuminated with a matched polarization field which is TM polarized with regard to the elliptical slit. The arrows represent the orientation of polarization of the incident light at each point. The Black ellipse represents the slit in the metal.

Fig. 2
Fig. 2

Normalized |Ez|2 intensity distribution across ellipses with eccentricity of 0.6 and a semi major axis of 10 microns illuminated by a radially-like polarization field with wavelengths of (a) λ0, (b) 0.97λ0 and (c) 0.9λ0, respectively. The scale bar is common to all 3 figures.

Fig. 3
Fig. 3

|Ez|2 intensity component for the case where an ellipse with eccentricity of 0.6 and a semi major axis of 10 microns is illuminated by a linearly polarized light. The incident polarization direction is marked by the white arrow.

Fig. 4
Fig. 4

An SEM picture of an EPL with eccentricity of 0.79 and a semi major axis of 10 microns.

Fig. 5
Fig. 5

NSOM measurement (a) and computer simulation (b) of the |Ez|2 intensity component as generated by an EPL with an eccentricity of 0.79 and a semi major axis of 10 microns. The EPL is illuminated by a matched radially-like polarization field. The time evolution of the |Ez|2 intensity component can be seen in (Media 1). This movie is based on finite difference time domain calculation using Meep.

Fig. 6
Fig. 6

(a) An NSOM scan performed few microns above the same EPL of Fig. 4. (b) A corresponding computer simulation showing the electric energy density.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U(r)Einc(x',y')G(|rr'|)dx'dy'

Metrics