Abstract

Single-beam optical trapping of micrometer-sized dielectric particles is experimentally demonstrated using radially and azimuthally polarized beams. The axial and transverse optical trapping efficiencies of glass and polystyrene beads suspended in water are measured. The radially polarized beam exhibited the highest trapping efficiency in the axial direction due to the p polarization of the radial polarization on the particle surface. On the other hand, the azimuthally polarized beam had a higher transverse trapping efficiency than the radially polarized beam. These results are consistent with numerical predictions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  3. S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
    [CrossRef]
  4. D. Ganic, X. Gan, and M. Gu, “Optical trapping force with annular and doughnut laser beams based on vectorial diffraction,” Opt. Express 13(4), 1260–1265 (2005).
    [CrossRef] [PubMed]
  5. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32(13), 1839–1841 (2007).
    [CrossRef] [PubMed]
  6. S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76(5), 053836 (2007).
    [CrossRef]
  7. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
    [CrossRef] [PubMed]
  8. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
    [CrossRef]
  9. R. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, “Trapping of low-refractive-index particles with azimuthally polarized beam,” J. Opt. Soc. Am. B 26(12), 2242–2247 (2009).
    [CrossRef]
  10. M. Michihata, T. Hayashi, and Y. Takaya, “Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam,” Appl. Opt. 48(32), 6143–6151 (2009).
    [CrossRef] [PubMed]
  11. S. Sato and H. Inaba, “Optical trapping and manipulation of microscopic particles and biological cells by laser beams,” Opt. Quantum Electron. 28(1), 1–16 (1996).
    [CrossRef]
  12. Y. Kozawa, K. Yonezawa, and S. Sato, “Radially polarized laser beam from a Nd:YAG laser cavity with a c-cut YVO4 crystal,” Appl. Phys. B 88(1), 43–46 (2007).
    [CrossRef]
  13. H. Felgner, O. Müller, and M. Schliwa, “Calibration of light forces in optical tweezers,” Appl. Opt. 34(6), 977–982 (1995).
    [CrossRef] [PubMed]
  14. N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
    [CrossRef] [PubMed]

2009 (3)

2008 (1)

2007 (4)

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[CrossRef] [PubMed]

H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32(13), 1839–1841 (2007).
[CrossRef] [PubMed]

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76(5), 053836 (2007).
[CrossRef]

Y. Kozawa, K. Yonezawa, and S. Sato, “Radially polarized laser beam from a Nd:YAG laser cavity with a c-cut YVO4 crystal,” Appl. Phys. B 88(1), 43–46 (2007).
[CrossRef]

2005 (1)

1996 (1)

S. Sato and H. Inaba, “Optical trapping and manipulation of microscopic particles and biological cells by laser beams,” Opt. Quantum Electron. 28(1), 1–16 (1996).
[CrossRef]

1995 (1)

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

1991 (1)

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

1986 (1)

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Chu, S.

Dziedzic, J. M.

Felgner, H.

Gan, X.

Ganic, D.

Gu, M.

Hayashi, T.

Heckenberg, N. R.

Inaba, H.

S. Sato and H. Inaba, “Optical trapping and manipulation of microscopic particles and biological cells by laser beams,” Opt. Quantum Electron. 28(1), 1–16 (1996).
[CrossRef]

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

Ishigure, M.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

Kawauchi, H.

Kozawa, Y.

Lei, M.

Maia Neto, P. A.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[CrossRef] [PubMed]

Mazolli, A.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[CrossRef] [PubMed]

Mesquita, O. N.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[CrossRef] [PubMed]

Michihata, M.

Müller, O.

Nieminen, T. A.

Nussenzveig, H. M.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[CrossRef] [PubMed]

Peng, R.

Rocha, M. S.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

Sato, S.

Y. Kozawa, K. Yonezawa, and S. Sato, “Radially polarized laser beam from a Nd:YAG laser cavity with a c-cut YVO4 crystal,” Appl. Phys. B 88(1), 43–46 (2007).
[CrossRef]

H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32(13), 1839–1841 (2007).
[CrossRef] [PubMed]

S. Sato and H. Inaba, “Optical trapping and manipulation of microscopic particles and biological cells by laser beams,” Opt. Quantum Electron. 28(1), 1–16 (1996).
[CrossRef]

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

Schliwa, M.

Takaya, Y.

Viana, N. B.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[CrossRef] [PubMed]

Yan, S.

R. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, “Trapping of low-refractive-index particles with azimuthally polarized beam,” J. Opt. Soc. Am. B 26(12), 2242–2247 (2009).
[CrossRef]

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76(5), 053836 (2007).
[CrossRef]

Yao, B.

R. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, “Trapping of low-refractive-index particles with azimuthally polarized beam,” J. Opt. Soc. Am. B 26(12), 2242–2247 (2009).
[CrossRef]

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76(5), 053836 (2007).
[CrossRef]

Yonezawa, K.

Zhan, Q.

Zhao, W.

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. B (1)

Y. Kozawa, K. Yonezawa, and S. Sato, “Radially polarized laser beam from a Nd:YAG laser cavity with a c-cut YVO4 crystal,” Appl. Phys. B 88(1), 43–46 (2007).
[CrossRef]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

Electron. Lett. (1)

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

S. Sato and H. Inaba, “Optical trapping and manipulation of microscopic particles and biological cells by laser beams,” Opt. Quantum Electron. 28(1), 1–16 (1996).
[CrossRef]

Phys. Rev. A (1)

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76(5), 053836 (2007).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the optical trapping setup

Fig. 2
Fig. 2

Polarization conversion of (a) radial into azimuthal polarization using two half-wave plates and (b) azimuthal into linear polarization using a quarter-wave plate and a linear polarizer. (c)−(e) show the measured intensity distributions of radially, azimuthally, and linearly polarized beams, respectively.

Fig. 3
Fig. 3

Calculated trapping efficiencies along (a) axial and (b) transverse directions. The circle in (a) and the quarter sector in (b) indicate the particle circumference.

Fig. 4
Fig. 4

(a) Minimum power to hold a particle as a function of a diameter of glass beads for the incident beams with radial (circles), azimuthal (squares), and linear (triangles) polarization. (b) Corresponding maximum axial trapping efficiency.

Fig. 5
Fig. 5

Measured transverse trapping force as a function of laser power for trapping polystyrene beads with nominal diameters of (a) 3 μm, (b) 6 μm, and (c) 9 μm.

Metrics