Abstract

We present an idea based on Poincaré sphere and demonstrate the creation of a new type of vector fields, which have hybrid states of polarization. Such a type of hybridly polarized vector fields have completely different property from the reported scalar and vector fields. The novel vector fields are anticipated to result in new effects, phenomena, and applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [CrossRef]
  2. C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
    [CrossRef]
  3. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007).
    [CrossRef] [PubMed]
  4. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Opt. Express 7, 77–87 (2000).
    [CrossRef] [PubMed]
  5. Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10, 324–331 (2002).
    [PubMed]
  6. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  7. C. C. Sun and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28, 99–101 (2003).
    [CrossRef] [PubMed]
  8. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793–1798 (2007).
    [CrossRef]
  9. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501–505 (2008).
    [CrossRef]
  10. P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing Radially Polarized Light by a Concentrically Corrugated Silver Film without a Hole,” Phys. Rev. Lett. 102, 103902 (2009).
    [CrossRef]
  11. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano. Lett. 9, 2139 (2009).
    [CrossRef] [PubMed]
  12. W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34, 722–724 (2009).
    [CrossRef] [PubMed]
  13. K. Watanabe, G. Terakado, and H. Kano, “Localized surface plasmon microscope with an illumination system employing a radially polarized zeroth-order Bessel beam,” Opt. Lett. 34, 1180–1182 (2009).
    [CrossRef] [PubMed]
  14. F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34, 1870–1872 (2009).
    [CrossRef] [PubMed]
  15. J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
    [CrossRef]
  16. W. T. Tang, E. Y. S. Yew, and C. J. R. Sheppard, “Polarization conversion in confocal microscopy with radially polarized illumination,” Opt. Lett. 34, 2147–2149 (2009).
    [CrossRef] [PubMed]
  17. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
    [CrossRef] [PubMed]
  18. B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34, 1918–1920 (2009).
    [CrossRef] [PubMed]
  19. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
    [CrossRef] [PubMed]
  20. J. Q. Qin, X. L. Wang, D. Jia, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17, 8407–8416 (2009).
    [CrossRef] [PubMed]
  21. W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265, 411–417 (2006).
    [CrossRef]
  22. N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light,” Opt. Commun. 279, 229–234 (2007).
    [CrossRef]
  23. X. L. Wang, J. Ding, J. Q. Qin, J. Chen, Y. X. Fan, and H. T. Wang, “Configurable three-dimensional optical cage generated from cylindrical vector beams,” Opt. Commun. 282, 3421–3425 (2009).
    [CrossRef]
  24. M. Rashid, O. M. Maragò, and P. H. Jones, “Focusing of high order cylindrical vector beams,” J. Opt. A: Pure Appl. Opt. 11, 065204 (2009).
    [CrossRef]
  25. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
    [CrossRef] [PubMed]
  26. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006).
    [CrossRef] [PubMed]
  27. H. Kawauchi, Y. Kozawa, and S. Sato, “Generation of radially polarized Ti:sapphire laser beam using a c-cut crystal,” Opt. Lett. 33, 1984–1986 (2008).
    [CrossRef] [PubMed]
  28. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32, 3272–3274 (2007).
    [CrossRef] [PubMed]
  29. M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008).
    [CrossRef]
  30. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
    [CrossRef]
  31. Q. Zhan and J. R. Leger, “Interferometric measurement of Berry’s phase in space-variant polarization manipulations,” Opt. Commun. 213, 241–245 (2002).
    [CrossRef]
  32. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
    [CrossRef]
  33. M. A. A. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27, 1929–1931 (2002).
    [CrossRef]
  34. L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184, 67–71 (2000).
    [CrossRef]
  35. C. F. Li, “Physical evidence for a new symmetry axis of electromagnetic beams,” Phys. Rev. A. 79, 053819 (2009).
    [CrossRef]
  36. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  37. M. Onoda, S. Murakami, and N. Nagaosa, “Geometrical aspects in optical wave-packet dynamics,” Phys. Rev. E. 74, 066610 (2006).
    [CrossRef]
  38. K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet,” Phys. Rev. E. 75, 066609 (2007).
    [CrossRef]
  39. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  40. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100, 013602 (2008).
    [CrossRef] [PubMed]

2009 (13)

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing Radially Polarized Light by a Concentrically Corrugated Silver Film without a Hole,” Phys. Rev. Lett. 102, 103902 (2009).
[CrossRef]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano. Lett. 9, 2139 (2009).
[CrossRef] [PubMed]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

X. L. Wang, J. Ding, J. Q. Qin, J. Chen, Y. X. Fan, and H. T. Wang, “Configurable three-dimensional optical cage generated from cylindrical vector beams,” Opt. Commun. 282, 3421–3425 (2009).
[CrossRef]

M. Rashid, O. M. Maragò, and P. H. Jones, “Focusing of high order cylindrical vector beams,” J. Opt. A: Pure Appl. Opt. 11, 065204 (2009).
[CrossRef]

C. F. Li, “Physical evidence for a new symmetry axis of electromagnetic beams,” Phys. Rev. A. 79, 053819 (2009).
[CrossRef]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
[CrossRef]

W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34, 722–724 (2009).
[CrossRef] [PubMed]

K. Watanabe, G. Terakado, and H. Kano, “Localized surface plasmon microscope with an illumination system employing a radially polarized zeroth-order Bessel beam,” Opt. Lett. 34, 1180–1182 (2009).
[CrossRef] [PubMed]

J. Q. Qin, X. L. Wang, D. Jia, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17, 8407–8416 (2009).
[CrossRef] [PubMed]

F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34, 1870–1872 (2009).
[CrossRef] [PubMed]

B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34, 1918–1920 (2009).
[CrossRef] [PubMed]

W. T. Tang, E. Y. S. Yew, and C. J. R. Sheppard, “Polarization conversion in confocal microscopy with radially polarized illumination,” Opt. Lett. 34, 2147–2149 (2009).
[CrossRef] [PubMed]

2008 (5)

H. Kawauchi, Y. Kozawa, and S. Sato, “Generation of radially polarized Ti:sapphire laser beam using a c-cut crystal,” Opt. Lett. 33, 1984–1986 (2008).
[CrossRef] [PubMed]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100, 013602 (2008).
[CrossRef] [PubMed]

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501–505 (2008).
[CrossRef]

2007 (6)

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[CrossRef]

N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light,” Opt. Commun. 279, 229–234 (2007).
[CrossRef]

K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet,” Phys. Rev. E. 75, 066609 (2007).
[CrossRef]

Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793–1798 (2007).
[CrossRef]

M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32, 3272–3274 (2007).
[CrossRef] [PubMed]

X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007).
[CrossRef] [PubMed]

2006 (3)

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006).
[CrossRef] [PubMed]

M. Onoda, S. Murakami, and N. Nagaosa, “Geometrical aspects in optical wave-packet dynamics,” Phys. Rev. E. 74, 066610 (2006).
[CrossRef]

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265, 411–417 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (3)

C. C. Sun and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28, 99–101 (2003).
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

2002 (4)

2000 (2)

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Opt. Express 7, 77–87 (2000).
[CrossRef] [PubMed]

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184, 67–71 (2000).
[CrossRef]

1986 (1)

Ahmed, M. A.

Allen, L.

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184, 67–71 (2000).
[CrossRef]

Amato-Grill, J.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100, 013602 (2008).
[CrossRef] [PubMed]

Antosiewicz, T. J.

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing Radially Polarized Light by a Concentrically Corrugated Silver Film without a Hole,” Phys. Rev. Lett. 102, 103902 (2009).
[CrossRef]

Ashkin, A.

Bernet, S.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[CrossRef]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Biener, G.

Bjorkholm, J. E.

Bliokh, K. Yu.

K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet,” Phys. Rev. E. 75, 066609 (2007).
[CrossRef]

Bliokh, Yu. P.

K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet,” Phys. Rev. E. 75, 066609 (2007).
[CrossRef]

Bokor, N.

N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light,” Opt. Commun. 279, 229–234 (2007).
[CrossRef]

Bomzon, Z.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Brown, T. G.

Chen, J.

X. L. Wang, J. Ding, J. Q. Qin, J. Chen, Y. X. Fan, and H. T. Wang, “Configurable three-dimensional optical cage generated from cylindrical vector beams,” Opt. Commun. 282, 3421–3425 (2009).
[CrossRef]

J. Q. Qin, X. L. Wang, D. Jia, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17, 8407–8416 (2009).
[CrossRef] [PubMed]

Chen, W.

Chong, C. T.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501–505 (2008).
[CrossRef]

Chu, S.

Davidson, N.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light,” Opt. Commun. 279, 229–234 (2007).
[CrossRef]

Ding, J.

X. L. Wang, J. Ding, J. Q. Qin, J. Chen, Y. X. Fan, and H. T. Wang, “Configurable three-dimensional optical cage generated from cylindrical vector beams,” Opt. Commun. 282, 3421–3425 (2009).
[CrossRef]

X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007).
[CrossRef] [PubMed]

Ding, J. P.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Dziedzic, J. M.

Fan, Y. X.

J. Q. Qin, X. L. Wang, D. Jia, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17, 8407–8416 (2009).
[CrossRef] [PubMed]

X. L. Wang, J. Ding, J. Q. Qin, J. Chen, Y. X. Fan, and H. T. Wang, “Configurable three-dimensional optical cage generated from cylindrical vector beams,” Opt. Commun. 282, 3421–3425 (2009).
[CrossRef]

Fridman, M.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Friesem, A. A.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Furhapter, S.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[CrossRef]

Graf, T.

Grier, D. G.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100, 013602 (2008).
[CrossRef] [PubMed]

Gu, M.

Guo, C. S.

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Hasman, E.

Huang, Z.

F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34, 1870–1872 (2009).
[CrossRef] [PubMed]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

Jackel, S.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Jesacher, A.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[CrossRef]

Jia, B.

Jia, D.

Jones, P. H.

M. Rashid, O. M. Maragò, and P. H. Jones, “Focusing of high order cylindrical vector beams,” J. Opt. A: Pure Appl. Opt. 11, 065204 (2009).
[CrossRef]

Juskaitis, R.

Kang, H.

Kano, H.

Kawauchi, H.

Kleiner, V.

Kozawa, Y.

Leger, J.

Leger, J. R.

Q. Zhan and J. R. Leger, “Interferometric measurement of Berry’s phase in space-variant polarization manipulations,” Opt. Commun. 213, 241–245 (2002).
[CrossRef]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano. Lett. 9, 2139 (2009).
[CrossRef] [PubMed]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano. Lett. 9, 2139 (2009).
[CrossRef] [PubMed]

Li, C. F.

C. F. Li, “Physical evidence for a new symmetry axis of electromagnetic beams,” Phys. Rev. A. 79, 053819 (2009).
[CrossRef]

Li, J.

Lin, J.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

Liu, C. K.

Lu, F.

F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34, 1870–1872 (2009).
[CrossRef] [PubMed]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

Lukyanchuk, B.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501–505 (2008).
[CrossRef]

Lumer, Y.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Machavariani, G.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Maragò, O. M.

M. Rashid, O. M. Maragò, and P. H. Jones, “Focusing of high order cylindrical vector beams,” J. Opt. A: Pure Appl. Opt. 11, 065204 (2009).
[CrossRef]

Massoumian, F.

Maurer, C.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[CrossRef]

Meir, A.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Moshe, I.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, “Geometrical aspects in optical wave-packet dynamics,” Phys. Rev. E. 74, 066610 (2006).
[CrossRef]

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, “Geometrical aspects in optical wave-packet dynamics,” Phys. Rev. E. 74, 066610 (2006).
[CrossRef]

Neil, M. A. A.

Ni, W. J.

Novotny, L.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Onoda, M.

M. Onoda, S. Murakami, and N. Nagaosa, “Geometrical aspects in optical wave-packet dynamics,” Phys. Rev. E. 74, 066610 (2006).
[CrossRef]

Padgett, M. J.

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184, 67–71 (2000).
[CrossRef]

Pniewski, J.

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing Radially Polarized Light by a Concentrically Corrugated Silver Film without a Hole,” Phys. Rev. Lett. 102, 103902 (2009).
[CrossRef]

Qin, J. Q.

J. Q. Qin, X. L. Wang, D. Jia, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17, 8407–8416 (2009).
[CrossRef] [PubMed]

X. L. Wang, J. Ding, J. Q. Qin, J. Chen, Y. X. Fan, and H. T. Wang, “Configurable three-dimensional optical cage generated from cylindrical vector beams,” Opt. Commun. 282, 3421–3425 (2009).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Rashid, M.

M. Rashid, O. M. Maragò, and P. H. Jones, “Focusing of high order cylindrical vector beams,” J. Opt. A: Pure Appl. Opt. 11, 065204 (2009).
[CrossRef]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[CrossRef]

Roichman, Y.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100, 013602 (2008).
[CrossRef] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100, 013602 (2008).
[CrossRef] [PubMed]

Sato, S.

Sheppard, C.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501–505 (2008).
[CrossRef]

Sheppard, C. J. R.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

W. T. Tang, E. Y. S. Yew, and C. J. R. Sheppard, “Polarization conversion in confocal microscopy with radially polarized illumination,” Opt. Lett. 34, 2147–2149 (2009).
[CrossRef] [PubMed]

Shi, L. P.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501–505 (2008).
[CrossRef]

Sun, B.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100, 013602 (2008).
[CrossRef] [PubMed]

Sun, C. C.

Szoplik, T.

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing Radially Polarized Light by a Concentrically Corrugated Silver Film without a Hole,” Phys. Rev. Lett. 102, 103902 (2009).
[CrossRef]

Tang, W. T.

Terakado, G.

Vogel, M. M.

Voss, A.

Wang, H.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

Wang, H. F.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501–505 (2008).
[CrossRef]

Wang, H. T.

Wang, X. L.

Watanabe, K.

Wilson, T.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Wróbel, P.

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing Radially Polarized Light by a Concentrically Corrugated Silver Film without a Hole,” Phys. Rev. Lett. 102, 103902 (2009).
[CrossRef]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano. Lett. 9, 2139 (2009).
[CrossRef] [PubMed]

Yew, E. Y. S.

Yonezawa, K.

Youngworth, K. S.

Zhan, Q.

Zheng, W.

F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34, 1870–1872 (2009).
[CrossRef] [PubMed]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

M. Rashid, O. M. Maragò, and P. H. Jones, “Focusing of high order cylindrical vector beams,” J. Opt. A: Pure Appl. Opt. 11, 065204 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano. Lett. (1)

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano. Lett. 9, 2139 (2009).
[CrossRef] [PubMed]

Nat. Photon. (1)

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501–505 (2008).
[CrossRef]

New J. Phys. (1)

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[CrossRef]

Opt. Commun. (6)

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184, 67–71 (2000).
[CrossRef]

W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265, 411–417 (2006).
[CrossRef]

N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light,” Opt. Commun. 279, 229–234 (2007).
[CrossRef]

X. L. Wang, J. Ding, J. Q. Qin, J. Chen, Y. X. Fan, and H. T. Wang, “Configurable three-dimensional optical cage generated from cylindrical vector beams,” Opt. Commun. 282, 3421–3425 (2009).
[CrossRef]

Q. Zhan and J. R. Leger, “Interferometric measurement of Berry’s phase in space-variant polarization manipulations,” Opt. Commun. 213, 241–245 (2002).
[CrossRef]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (14)

F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34, 1870–1872 (2009).
[CrossRef] [PubMed]

B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34, 1918–1920 (2009).
[CrossRef] [PubMed]

W. T. Tang, E. Y. S. Yew, and C. J. R. Sheppard, “Polarization conversion in confocal microscopy with radially polarized illumination,” Opt. Lett. 34, 2147–2149 (2009).
[CrossRef] [PubMed]

M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32, 3272–3274 (2007).
[CrossRef] [PubMed]

X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007).
[CrossRef] [PubMed]

H. Kawauchi, Y. Kozawa, and S. Sato, “Generation of radially polarized Ti:sapphire laser beam using a c-cut crystal,” Opt. Lett. 33, 1984–1986 (2008).
[CrossRef] [PubMed]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
[CrossRef] [PubMed]

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006).
[CrossRef] [PubMed]

M. A. A. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27, 1929–1931 (2002).
[CrossRef]

C. C. Sun and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28, 99–101 (2003).
[CrossRef] [PubMed]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002).
[CrossRef]

W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34, 722–724 (2009).
[CrossRef] [PubMed]

K. Watanabe, G. Terakado, and H. Kano, “Localized surface plasmon microscope with an illumination system employing a radially polarized zeroth-order Bessel beam,” Opt. Lett. 34, 1180–1182 (2009).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Phys. Rev. A. (1)

C. F. Li, “Physical evidence for a new symmetry axis of electromagnetic beams,” Phys. Rev. A. 79, 053819 (2009).
[CrossRef]

Phys. Rev. E. (2)

M. Onoda, S. Murakami, and N. Nagaosa, “Geometrical aspects in optical wave-packet dynamics,” Phys. Rev. E. 74, 066610 (2006).
[CrossRef]

K. Yu. Bliokh and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet,” Phys. Rev. E. 75, 066609 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing Radially Polarized Light by a Concentrically Corrugated Silver Film without a Hole,” Phys. Rev. Lett. 102, 103902 (2009).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100, 013602 (2008).
[CrossRef] [PubMed]

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Poincaré sphere ∑ and (b) different SoPs on Poincaré sphere ∑.

Fig. 2.
Fig. 2.

Schematic diagram of experimental setup.

Fig. 3.
Fig. 3.

Distribution of SoPs of the created vector field for ϕ = −π/4 and δ = φ (a) and the well-known radially polarized field (b).

Fig. 4.
Fig. 4.

Intensity patterns for the vector fields without and with a polarizer. First and second rows are the hybridly polarized vector field with ϕ = −π/4 and δ = φ and the radially polarized field, respectively. Third row shows the directions of the polarizer.

Fig. 5.
Fig. 5.

Created four different vector fields with the directions of the λ/2 waveplate in the +1 order path along 0, π/4, π/2 and 3π/4, the SoPs (the first row) and the intensity patterns behind the horizontal polarizer (the second row).

Fig. 6.
Fig. 6.

Hybridly polarized vector fields created by the pair of base vectors {êx, êy} when m = 1, for φ0 = 0, π/4, π/2, and 3p/4.

Fig. 7.
Fig. 7.

Hybridly polarized vector fields by the pair of base vectors {êx, êy} with φ0 = 0 and m=2 (the upper row). For comparison, the local linearly polarized vector field with φ0 = 0 and m = 2, by the method in Ref. 3 (the bottom row).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ŝ (2ϕ,2α) =sin(α+π/4) exp (jϕ) êr+cos(α+π/4) exp (jϕ)êl
=12[sin(α+π/4)exp(jϕ)+cos(α+π/4)exp(jϕ)]êx+
j 12[sin(α+π/4)exp(jϕ)cos(α+π/4)exp(jϕ)]êy
P̂(ρ,φ)=12[exp(jδ)êr+exp(jδ)êl]
=cosδêx+sinδêy
P̂(ρ,φ)=12(cosϕêx+sinϕêy)exp(jδ)+12(sinϕêx+cosϕêy)exp(jδ)
= cos(δ+π/4)exp[(j(ϕ+π/4)]êr+sin(δ+π/4)exp[j(ϕ+π/4)]êl

Metrics