Abstract

Resonant output energy enhancement in a singly resonant nondegenerate type-I optical parametric oscillator with a volume Bragg grating output coupler is demonstrated. The resonances occur when the pump laser and parametric oscillator cavity length ratio is an integer or a fraction of small integers. Although the length resonances are similar to those observed in doubly resonant optical parametric oscillators, the physical mechanism is distinctly different. The resonances in the singly resonant oscillator are caused by correlation of the instantaneous power between the quasi-periodic multimode pump laser beam and the OPO signal.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, “Effect of resonator length on a doubly resonant optical parametric oscillator pumped by a multilongitudinal-mode beam,” Opt. Lett. 25(22), 1654–1656 (2000).
    [CrossRef]
  2. G. Rustad, E. Lippert, K. Stenersen, and G. Arisholm, “Enhanced power from a doubly resonant optical parametric oscillator by choice of resonator length,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), 660–665, paper WD5.
  3. S. Harris, “Threshold of multimode parametric oscillators,” IEEE J. Quantum Electron. 2(10), 701–702 (1966).
    [CrossRef]
  4. R. L. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13(3), 109–111 (1968).
    [CrossRef]
  5. K. Burneika, M. Ignatavicius, V. Kabelka, A. Piskarskas, and A. Stabinis, “Parametric light amplification and oscillation in KDP with mode-locked pump,” IEEE J. Quantum Electron. 8(6), 574 (1972).
    [CrossRef]
  6. E. C. Cheung and J. M. Liu, “Theory of a synchronously pumped optical parametric oscillator in steady-state operation,” J. Opt. Soc. Am. B 7(8), 1385–1401 (1990).
    [CrossRef]
  7. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Narrowband bulk Bragg grating optical parametric oscillator,” Opt. Lett. 30(17), 2281–2283 (2005).
    [CrossRef] [PubMed]
  8. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
    [CrossRef]
  9. M. Henriksson, L. Sjöqvist, G. Strömqvist, V. Pasiskevicius, and F. Laurell, “Tandem PPKTP and ZGP OPO for mid-infrared generation,” in Technologies for Optical Countermeasures V(SPIE, Cardiff, Wales, United Kingdom, 2008), Proc. SPIE 7115, 71150O (2008).
    [CrossRef]
  10. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett. 32(20), 2996–2998 (2007).
    [CrossRef] [PubMed]
  11. M. Henriksson, L. Sjöqvist, V. Pasiskevicius, and F. Laurell, “Mode spectrum of multi-longitudinal mode pumped near-degenerate OPOs with volume Bragg grating output couplers,” Opt. Express 17(20), 17582–17589 (2009).
    [CrossRef] [PubMed]
  12. B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
    [CrossRef] [PubMed]
  13. M. Henriksson, L. Sjöqvist, V. Pasiskevicius, and F. Laurell, Near-degenerate volume Bragg grating PPKTP OPOs in tandem OPO mid-IR sources, Mid Infrared Coherent Sources (Trouville-sur-Mer, France, 2009), PO08.
  14. H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
    [CrossRef]
  15. J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
    [CrossRef]
  16. G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16(1), 117–127 (1999).
    [CrossRef]
  17. G. Arisholm, “Advanced numerical simulation models for second-order nonlinear interactions,” Proc. SPIE 3685, 86–97 (1999).
    [CrossRef]
  18. G. Arisholm, FFI, Norway, private communication.
  19. H. Huang, J. He, X. Fan, Y. Zhong, H. Chai, and Y. Wang, “The acousto-optic Q-switched mode-locking Nd:YVO4 laser,” Opt. Laser Technol. 40(6), 828–831 (2008).
    [CrossRef]

2009 (2)

2008 (3)

H. Huang, J. He, X. Fan, Y. Zhong, H. Chai, and Y. Wang, “The acousto-optic Q-switched mode-locking Nd:YVO4 laser,” Opt. Laser Technol. 40(6), 828–831 (2008).
[CrossRef]

M. Henriksson, L. Sjöqvist, G. Strömqvist, V. Pasiskevicius, and F. Laurell, “Tandem PPKTP and ZGP OPO for mid-infrared generation,” in Technologies for Optical Countermeasures V(SPIE, Cardiff, Wales, United Kingdom, 2008), Proc. SPIE 7115, 71150O (2008).
[CrossRef]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

2007 (2)

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[CrossRef]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett. 32(20), 2996–2998 (2007).
[CrossRef] [PubMed]

2005 (1)

2000 (1)

1999 (2)

G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16(1), 117–127 (1999).
[CrossRef]

G. Arisholm, “Advanced numerical simulation models for second-order nonlinear interactions,” Proc. SPIE 3685, 86–97 (1999).
[CrossRef]

1997 (1)

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[CrossRef]

1990 (1)

1972 (1)

K. Burneika, M. Ignatavicius, V. Kabelka, A. Piskarskas, and A. Stabinis, “Parametric light amplification and oscillation in KDP with mode-locked pump,” IEEE J. Quantum Electron. 8(6), 574 (1972).
[CrossRef]

1968 (1)

R. L. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13(3), 109–111 (1968).
[CrossRef]

1966 (1)

S. Harris, “Threshold of multimode parametric oscillators,” IEEE J. Quantum Electron. 2(10), 701–702 (1966).
[CrossRef]

Arisholm, G.

Burneika, K.

K. Burneika, M. Ignatavicius, V. Kabelka, A. Piskarskas, and A. Stabinis, “Parametric light amplification and oscillation in KDP with mode-locked pump,” IEEE J. Quantum Electron. 8(6), 574 (1972).
[CrossRef]

Byer, R. L.

R. L. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13(3), 109–111 (1968).
[CrossRef]

Chai, H.

H. Huang, J. He, X. Fan, Y. Zhong, H. Chai, and Y. Wang, “The acousto-optic Q-switched mode-locking Nd:YVO4 laser,” Opt. Laser Technol. 40(6), 828–831 (2008).
[CrossRef]

Cheung, E. C.

Fan, X.

H. Huang, J. He, X. Fan, Y. Zhong, H. Chai, and Y. Wang, “The acousto-optic Q-switched mode-locking Nd:YVO4 laser,” Opt. Laser Technol. 40(6), 828–831 (2008).
[CrossRef]

Fujii, M.

Glebov, L.

Harris, S.

S. Harris, “Threshold of multimode parametric oscillators,” IEEE J. Quantum Electron. 2(10), 701–702 (1966).
[CrossRef]

Harris, S. E.

R. L. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13(3), 109–111 (1968).
[CrossRef]

He, J.

H. Huang, J. He, X. Fan, Y. Zhong, H. Chai, and Y. Wang, “The acousto-optic Q-switched mode-locking Nd:YVO4 laser,” Opt. Laser Technol. 40(6), 828–831 (2008).
[CrossRef]

Hellström, J. E.

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

Henriksson, M.

M. Henriksson, L. Sjöqvist, V. Pasiskevicius, and F. Laurell, “Mode spectrum of multi-longitudinal mode pumped near-degenerate OPOs with volume Bragg grating output couplers,” Opt. Express 17(20), 17582–17589 (2009).
[CrossRef] [PubMed]

M. Henriksson, L. Sjöqvist, G. Strömqvist, V. Pasiskevicius, and F. Laurell, “Tandem PPKTP and ZGP OPO for mid-infrared generation,” in Technologies for Optical Countermeasures V(SPIE, Cardiff, Wales, United Kingdom, 2008), Proc. SPIE 7115, 71150O (2008).
[CrossRef]

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[CrossRef]

Huang, H.

H. Huang, J. He, X. Fan, Y. Zhong, H. Chai, and Y. Wang, “The acousto-optic Q-switched mode-locking Nd:YVO4 laser,” Opt. Laser Technol. 40(6), 828–831 (2008).
[CrossRef]

Ignatavicius, M.

K. Burneika, M. Ignatavicius, V. Kabelka, A. Piskarskas, and A. Stabinis, “Parametric light amplification and oscillation in KDP with mode-locked pump,” IEEE J. Quantum Electron. 8(6), 574 (1972).
[CrossRef]

Ishizuki, H.

Jacobsson, B.

Kabelka, V.

K. Burneika, M. Ignatavicius, V. Kabelka, A. Piskarskas, and A. Stabinis, “Parametric light amplification and oscillation in KDP with mode-locked pump,” IEEE J. Quantum Electron. 8(6), 574 (1972).
[CrossRef]

Karlsson, H.

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[CrossRef]

Laurell, F.

M. Henriksson, L. Sjöqvist, V. Pasiskevicius, and F. Laurell, “Mode spectrum of multi-longitudinal mode pumped near-degenerate OPOs with volume Bragg grating output couplers,” Opt. Express 17(20), 17582–17589 (2009).
[CrossRef] [PubMed]

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
[CrossRef] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

M. Henriksson, L. Sjöqvist, G. Strömqvist, V. Pasiskevicius, and F. Laurell, “Tandem PPKTP and ZGP OPO for mid-infrared generation,” in Technologies for Optical Countermeasures V(SPIE, Cardiff, Wales, United Kingdom, 2008), Proc. SPIE 7115, 71150O (2008).
[CrossRef]

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[CrossRef]

B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Narrowband bulk Bragg grating optical parametric oscillator,” Opt. Lett. 30(17), 2281–2283 (2005).
[CrossRef] [PubMed]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[CrossRef]

Lippert, E.

Liu, J. M.

Oshman, M. K.

R. L. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13(3), 109–111 (1968).
[CrossRef]

Pasiskevicius, V.

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
[CrossRef] [PubMed]

M. Henriksson, L. Sjöqvist, V. Pasiskevicius, and F. Laurell, “Mode spectrum of multi-longitudinal mode pumped near-degenerate OPOs with volume Bragg grating output couplers,” Opt. Express 17(20), 17582–17589 (2009).
[CrossRef] [PubMed]

M. Henriksson, L. Sjöqvist, G. Strömqvist, V. Pasiskevicius, and F. Laurell, “Tandem PPKTP and ZGP OPO for mid-infrared generation,” in Technologies for Optical Countermeasures V(SPIE, Cardiff, Wales, United Kingdom, 2008), Proc. SPIE 7115, 71150O (2008).
[CrossRef]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[CrossRef]

B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Narrowband bulk Bragg grating optical parametric oscillator,” Opt. Lett. 30(17), 2281–2283 (2005).
[CrossRef] [PubMed]

Piskarskas, A.

K. Burneika, M. Ignatavicius, V. Kabelka, A. Piskarskas, and A. Stabinis, “Parametric light amplification and oscillation in KDP with mode-locked pump,” IEEE J. Quantum Electron. 8(6), 574 (1972).
[CrossRef]

Rotari, E.

Rustad, G.

Saikawa, J.

Sjöqvist, L.

M. Henriksson, L. Sjöqvist, V. Pasiskevicius, and F. Laurell, “Mode spectrum of multi-longitudinal mode pumped near-degenerate OPOs with volume Bragg grating output couplers,” Opt. Express 17(20), 17582–17589 (2009).
[CrossRef] [PubMed]

M. Henriksson, L. Sjöqvist, G. Strömqvist, V. Pasiskevicius, and F. Laurell, “Tandem PPKTP and ZGP OPO for mid-infrared generation,” in Technologies for Optical Countermeasures V(SPIE, Cardiff, Wales, United Kingdom, 2008), Proc. SPIE 7115, 71150O (2008).
[CrossRef]

Smirnov, V.

Stabinis, A.

K. Burneika, M. Ignatavicius, V. Kabelka, A. Piskarskas, and A. Stabinis, “Parametric light amplification and oscillation in KDP with mode-locked pump,” IEEE J. Quantum Electron. 8(6), 574 (1972).
[CrossRef]

Stenersen, K.

Strömqvist, G.

M. Henriksson, L. Sjöqvist, G. Strömqvist, V. Pasiskevicius, and F. Laurell, “Tandem PPKTP and ZGP OPO for mid-infrared generation,” in Technologies for Optical Countermeasures V(SPIE, Cardiff, Wales, United Kingdom, 2008), Proc. SPIE 7115, 71150O (2008).
[CrossRef]

Taira, T.

Tiihonen, M.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[CrossRef]

B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Narrowband bulk Bragg grating optical parametric oscillator,” Opt. Lett. 30(17), 2281–2283 (2005).
[CrossRef] [PubMed]

Wang, Y.

H. Huang, J. He, X. Fan, Y. Zhong, H. Chai, and Y. Wang, “The acousto-optic Q-switched mode-locking Nd:YVO4 laser,” Opt. Laser Technol. 40(6), 828–831 (2008).
[CrossRef]

Young, J. F.

R. L. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13(3), 109–111 (1968).
[CrossRef]

Zhong, Y.

H. Huang, J. He, X. Fan, Y. Zhong, H. Chai, and Y. Wang, “The acousto-optic Q-switched mode-locking Nd:YVO4 laser,” Opt. Laser Technol. 40(6), 828–831 (2008).
[CrossRef]

Appl. Phys. B (1)

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

R. L. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13(3), 109–111 (1968).
[CrossRef]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71(24), 3474–3476 (1997).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

K. Burneika, M. Ignatavicius, V. Kabelka, A. Piskarskas, and A. Stabinis, “Parametric light amplification and oscillation in KDP with mode-locked pump,” IEEE J. Quantum Electron. 8(6), 574 (1972).
[CrossRef]

S. Harris, “Threshold of multimode parametric oscillators,” IEEE J. Quantum Electron. 2(10), 701–702 (1966).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Laser Technol. (1)

H. Huang, J. He, X. Fan, Y. Zhong, H. Chai, and Y. Wang, “The acousto-optic Q-switched mode-locking Nd:YVO4 laser,” Opt. Laser Technol. 40(6), 828–831 (2008).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (2)

M. Henriksson, L. Sjöqvist, G. Strömqvist, V. Pasiskevicius, and F. Laurell, “Tandem PPKTP and ZGP OPO for mid-infrared generation,” in Technologies for Optical Countermeasures V(SPIE, Cardiff, Wales, United Kingdom, 2008), Proc. SPIE 7115, 71150O (2008).
[CrossRef]

G. Arisholm, “Advanced numerical simulation models for second-order nonlinear interactions,” Proc. SPIE 3685, 86–97 (1999).
[CrossRef]

Other (3)

G. Arisholm, FFI, Norway, private communication.

G. Rustad, E. Lippert, K. Stenersen, and G. Arisholm, “Enhanced power from a doubly resonant optical parametric oscillator by choice of resonator length,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), 660–665, paper WD5.

M. Henriksson, L. Sjöqvist, V. Pasiskevicius, and F. Laurell, Near-degenerate volume Bragg grating PPKTP OPOs in tandem OPO mid-IR sources, Mid Infrared Coherent Sources (Trouville-sur-Mer, France, 2009), PO08.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The experimental setup.

Fig. 2
Fig. 2

Average OPO pulse energy as a function of cavity length ratio from SRO with VBG output coupler. The pump energies were 0.99, 0.93, 0.82, 0.67 and 0.50 mJ. The arrow points at the peak for cavity length ratio 5/12.

Fig. 3
Fig. 3

Average OPO pulse energy as a function of cavity length ratio from DRO with mirror output coupler. The pump pulse energies were 0.99, 0.93 and 0.73 mJ.

Fig. 4
Fig. 4

Enhancement peak with general slope subtracted for a cavity length of the OPO around ½ of the laser cavity length. The black curve is the SRO with the VBG and the red curve is the DRO with the mirror output coupler, in both cases with 0.99 mJ pump energy.

Fig. 5
Fig. 5

Simulated output energy from SRO with VBG output coupler in plane wave simulation. The pump energies are from the bottom 100, 125, 150, 175, 200, 250, 300, 350 and 400 µJ.

Fig. 6
Fig. 6

Results of a simulation with equal mode separations for pump laser and OPO showing the power after the input coupler. The simulation was done with 6 GHz pump bandwidth to make pump intensity variations slower. (Left) Roundtrip averaged pump (dashed) and signal (solid) intensities. (Upper right) Instantaneous pump intensity. (Lower right) Instantaneous signal intensity. τ denotes the periodicity due to the cavity roundtrips.

Metrics