Abstract

Multi-quantum wells (MQWs) InGaN/GaN LEDs, 300μm × 300μm chip size, were fabricated with Ta2O5 / SiO2 dielectric multi-layer micro-mirror array (MMA) embedded in the epitaxial-lateral-overgrowth (ELOG) gallium nitride (GaN) on the c-plane sapphire substrate. MQWs InGaN/GaN LEDs with ELOG embedded patterned SiO2 array (P-SiO2) of the same dimension as the MMA were also fabricated for comparison. Dislocation density was reduced for the ELOG samples. 75.2% light extraction enhancement for P-SiO2-LED and 102.6% light extraction enhancement for MMA-LED were obtained over the standard LED. We showed that multiple-diffraction with high intensity from the MMA redirected the trap lights to escape from the LED causing the light extraction enhancement.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
    [CrossRef]
  2. A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S.nP. DenBaars, E. L. Hu, C. Weisbuch and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88, 061124 (2006).
    [CrossRef]
  3. Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed bragg reflector,” J. Electron. Mater. 32, 1523–1526 (2003).
    [CrossRef]
  4. T. Nishinaga, T. Nakano, and S. Zhang, “Epitaxial lateral overgrowth of GaAs by LPE,” Jpn. J. Appl. Phys. 27, L964–L967 (1988).
    [CrossRef]
  5. A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, “Thick GaN epitaxial with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys. 36, L899–L902 (1997).
    [CrossRef]
  6. O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett. 71, 2638–2640 (1997).
    [CrossRef]
  7. S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
    [CrossRef]
  8. S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
    [CrossRef]
  9. K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power In-GaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 40, L583–L585 (2001).
    [CrossRef]
  10. M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaNbased near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431–L1433 (2002).
    [CrossRef]
  11. C-Y Cho, J-B Lee, S-J Lee, S-H Han, T-Y Park, JWKim, Y C Kim, and S-J Park, “Improvement of light output power of InGaN/GaN light-emitting diode by lateral epitaxial overgrowth using pyramidal-shaped SiO2,” Opt. Express 18, 1462–1468 (2010).
    [CrossRef] [PubMed]
  12. E. H. Park, J. Jang, S. Gupta, I. Ferguson, C.H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett. 93, 191103 (2008).
    [CrossRef]
  13. M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G.Y. Jung, S.J. Park, J.W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett. 92, 251110 (2008).
    [CrossRef]
  14. C. Y. Huang, H. M. Ku, and S. Chao, “Light extraction enhancement for InGaN/GaN LED by three dimensional auto-cloned photonics crystal,” Opt. Express 17, 23702–23711 (2009).
    [CrossRef]
  15. C. Y. Huang, H. M. Ku, W. T. Liao, C. L. Chao, J. D. Tsay, and S. Chao, “Heat resistive dielectric multi-layer micro-mirror array in epitaxial lateral overgrowth gallium nitride,” Opt. Express 17, 5624–5629 (2009).
    [CrossRef] [PubMed]
  16. K. Hiramatsu, “Epitaxial lateral overgrowth techniques used in group III nitride epitaxy,” J. Phys: Condens. Matter 13, 6961–6975 (2001).
    [CrossRef]
  17. Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).
    [CrossRef]

2010

2009

C. Y. Huang, H. M. Ku, and S. Chao, “Light extraction enhancement for InGaN/GaN LED by three dimensional auto-cloned photonics crystal,” Opt. Express 17, 23702–23711 (2009).
[CrossRef]

C. Y. Huang, H. M. Ku, W. T. Liao, C. L. Chao, J. D. Tsay, and S. Chao, “Heat resistive dielectric multi-layer micro-mirror array in epitaxial lateral overgrowth gallium nitride,” Opt. Express 17, 5624–5629 (2009).
[CrossRef] [PubMed]

Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).
[CrossRef]

2008

E. H. Park, J. Jang, S. Gupta, I. Ferguson, C.H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett. 93, 191103 (2008).
[CrossRef]

M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G.Y. Jung, S.J. Park, J.W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett. 92, 251110 (2008).
[CrossRef]

2006

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S.nP. DenBaars, E. L. Hu, C. Weisbuch and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

2004

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[CrossRef]

2003

Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed bragg reflector,” J. Electron. Mater. 32, 1523–1526 (2003).
[CrossRef]

2002

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaNbased near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431–L1433 (2002).
[CrossRef]

2001

K. Hiramatsu, “Epitaxial lateral overgrowth techniques used in group III nitride epitaxy,” J. Phys: Condens. Matter 13, 6961–6975 (2001).
[CrossRef]

K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power In-GaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 40, L583–L585 (2001).
[CrossRef]

1998

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
[CrossRef]

1997

A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, “Thick GaN epitaxial with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys. 36, L899–L902 (1997).
[CrossRef]

O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett. 71, 2638–2640 (1997).
[CrossRef]

1988

T. Nishinaga, T. Nakano, and S. Zhang, “Epitaxial lateral overgrowth of GaAs by LPE,” Jpn. J. Appl. Phys. 27, L964–L967 (1988).
[CrossRef]

Banas, M. A.

Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).
[CrossRef]

Bremser, M. D.

O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett. 71, 2638–2640 (1997).
[CrossRef]

Chao, C. L.

Chao, S.

Cho, C-Y

Chocho, K.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
[CrossRef]

Craford, M. G.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[CrossRef]

Crawford, M. H.

Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).
[CrossRef]

Dai, Q.

Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).
[CrossRef]

David, A.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S.nP. DenBaars, E. L. Hu, C. Weisbuch and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

Davis, R. F.

O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett. 71, 2638–2640 (1997).
[CrossRef]

Deguchi, K.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaNbased near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431–L1433 (2002).
[CrossRef]

Epler, J. E.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[CrossRef]

Ferguson, I.

E. H. Park, J. Jang, S. Gupta, I. Ferguson, C.H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett. 93, 191103 (2008).
[CrossRef]

Fischer, A. J.

Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).
[CrossRef]

Fujii, T.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S.nP. DenBaars, E. L. Hu, C. Weisbuch and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

Gardner, N. F.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[CrossRef]

Gupta, S.

E. H. Park, J. Jang, S. Gupta, I. Ferguson, C.H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett. 93, 191103 (2008).
[CrossRef]

Han, S-H

Hibbard, D. L.

Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed bragg reflector,” J. Electron. Mater. 32, 1523–1526 (2003).
[CrossRef]

Hiramatsu, K.

K. Hiramatsu, “Epitaxial lateral overgrowth techniques used in group III nitride epitaxy,” J. Phys: Condens. Matter 13, 6961–6975 (2001).
[CrossRef]

Huang, C. Y.

Imada, Y.

K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power In-GaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 40, L583–L585 (2001).
[CrossRef]

Iwasa, N.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
[CrossRef]

Jang, J.

E. H. Park, J. Jang, S. Gupta, I. Ferguson, C.H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett. 93, 191103 (2008).
[CrossRef]

Jeon, S. K.

E. H. Park, J. Jang, S. Gupta, I. Ferguson, C.H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett. 93, 191103 (2008).
[CrossRef]

Jung, G.Y.

M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G.Y. Jung, S.J. Park, J.W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett. 92, 251110 (2008).
[CrossRef]

Kato, M.

K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power In-GaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 40, L583–L585 (2001).
[CrossRef]

Kim, C.H.

E. H. Park, J. Jang, S. Gupta, I. Ferguson, C.H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett. 93, 191103 (2008).
[CrossRef]

Kim, J. K.

Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).
[CrossRef]

Kim, J. Y.

M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G.Y. Jung, S.J. Park, J.W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett. 92, 251110 (2008).
[CrossRef]

Kim, J.W.

M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G.Y. Jung, S.J. Park, J.W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett. 92, 251110 (2008).
[CrossRef]

Kim, K. S.

M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G.Y. Jung, S.J. Park, J.W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett. 92, 251110 (2008).
[CrossRef]

Kim, M. H.

Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).
[CrossRef]

Kim, Y. C.

M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G.Y. Jung, S.J. Park, J.W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett. 92, 251110 (2008).
[CrossRef]

Kiyoku, H.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
[CrossRef]

Koleske, D. D.

Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).
[CrossRef]

Kozaki, T.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[CrossRef]

Krames, M. R.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[CrossRef]

Ku, H. M.

Kwon, M. K.

M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G.Y. Jung, S.J. Park, J.W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett. 92, 251110 (2008).
[CrossRef]

Lee, H. P.

Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed bragg reflector,” J. Electron. Mater. 32, 1523–1526 (2003).
[CrossRef]

Lee, J-B

Lee, S. R.

Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).
[CrossRef]

Lee, S-J

Liao, W. T.

Liu, H.

Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed bragg reflector,” J. Electron. Mater. 32, 1523–1526 (2003).
[CrossRef]

Ma, K.

Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed bragg reflector,” J. Electron. Mater. 32, 1523–1526 (2003).
[CrossRef]

Matsushita, T.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[CrossRef]

McGroddy, K.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S.nP. DenBaars, E. L. Hu, C. Weisbuch and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

Mitani, T.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaNbased near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431–L1433 (2002).
[CrossRef]

Mukai, T.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaNbased near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431–L1433 (2002).
[CrossRef]

Nagahama, S. I.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
[CrossRef]

Nakamura, S.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S.nP. DenBaars, E. L. Hu, C. Weisbuch and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[CrossRef]

Nakano, T.

T. Nishinaga, T. Nakano, and S. Zhang, “Epitaxial lateral overgrowth of GaAs by LPE,” Jpn. J. Appl. Phys. 27, L964–L967 (1988).
[CrossRef]

Nam, O. H.

O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett. 71, 2638–2640 (1997).
[CrossRef]

Narukawa, Y.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaNbased near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431–L1433 (2002).
[CrossRef]

Niki, I.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaNbased near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431–L1433 (2002).
[CrossRef]

Nishinaga, T.

T. Nishinaga, T. Nakano, and S. Zhang, “Epitaxial lateral overgrowth of GaAs by LPE,” Jpn. J. Appl. Phys. 27, L964–L967 (1988).
[CrossRef]

Ohuchi, Y.

K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power In-GaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 40, L583–L585 (2001).
[CrossRef]

Okagawa, H.

K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power In-GaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 40, L583–L585 (2001).
[CrossRef]

Park, E. H.

E. H. Park, J. Jang, S. Gupta, I. Ferguson, C.H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett. 93, 191103 (2008).
[CrossRef]

Park, I. K.

M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G.Y. Jung, S.J. Park, J.W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett. 92, 251110 (2008).
[CrossRef]

Park, J. S.

E. H. Park, J. Jang, S. Gupta, I. Ferguson, C.H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett. 93, 191103 (2008).
[CrossRef]

Park, S.J.

M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G.Y. Jung, S.J. Park, J.W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett. 92, 251110 (2008).
[CrossRef]

Park, T-Y

Sakai, A.

A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, “Thick GaN epitaxial with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys. 36, L899–L902 (1997).
[CrossRef]

Sano, M.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaNbased near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431–L1433 (2002).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[CrossRef]

Schubert, E. F.

Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).
[CrossRef]

Schubert, M. F.

Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).
[CrossRef]

Senoh, M.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
[CrossRef]

Sharma, R.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S.nP. DenBaars, E. L. Hu, C. Weisbuch and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

Shioji, S.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaNbased near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431–L1433 (2002).
[CrossRef]

Sigalas, M. M.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[CrossRef]

Simmons, J. A.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[CrossRef]

So, W.

Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed bragg reflector,” J. Electron. Mater. 32, 1523–1526 (2003).
[CrossRef]

Sonobe, S.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaNbased near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431–L1433 (2002).
[CrossRef]

Sugimoto, Y.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[CrossRef]

Sunakawa, H.

A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, “Thick GaN epitaxial with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys. 36, L899–L902 (1997).
[CrossRef]

Tadatomo, K.

K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power In-GaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 40, L583–L585 (2001).
[CrossRef]

Taguchi, T.

K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power In-GaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 40, L583–L585 (2001).
[CrossRef]

Thaler, G.

Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).
[CrossRef]

Tsay, J. D.

Tsunekawa, T.

K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power In-GaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 40, L583–L585 (2001).
[CrossRef]

Umemoto, H.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
[CrossRef]

Usui, A.

A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, “Thick GaN epitaxial with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys. 36, L899–L902 (1997).
[CrossRef]

Wendt, J. R.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[CrossRef]

Wierer, J. J.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[CrossRef]

Yamada, M.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaNbased near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431–L1433 (2002).
[CrossRef]

Yamada, T.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[CrossRef]

Yamaguchi, A. A.

A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, “Thick GaN epitaxial with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys. 36, L899–L902 (1997).
[CrossRef]

Zhang, S.

T. Nishinaga, T. Nakano, and S. Zhang, “Epitaxial lateral overgrowth of GaAs by LPE,” Jpn. J. Appl. Phys. 27, L964–L967 (1988).
[CrossRef]

Zhao, Y. S.

Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed bragg reflector,” J. Electron. Mater. 32, 1523–1526 (2003).
[CrossRef]

Zheleva, T. S.

O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett. 71, 2638–2640 (1997).
[CrossRef]

Appl. Phys. Lett.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[CrossRef]

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S.nP. DenBaars, E. L. Hu, C. Weisbuch and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett. 71, 2638–2640 (1997).
[CrossRef]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[CrossRef]

Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).
[CrossRef]

E. H. Park, J. Jang, S. Gupta, I. Ferguson, C.H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett. 93, 191103 (2008).
[CrossRef]

M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G.Y. Jung, S.J. Park, J.W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett. 92, 251110 (2008).
[CrossRef]

J. Crystal Growth

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Crystal Growth 189/190, 820–825 (1998).
[CrossRef]

J. Electron. Mater.

Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed bragg reflector,” J. Electron. Mater. 32, 1523–1526 (2003).
[CrossRef]

J. Phys: Condens. Matter

K. Hiramatsu, “Epitaxial lateral overgrowth techniques used in group III nitride epitaxy,” J. Phys: Condens. Matter 13, 6961–6975 (2001).
[CrossRef]

Jpn. J. Appl. Phys.

T. Nishinaga, T. Nakano, and S. Zhang, “Epitaxial lateral overgrowth of GaAs by LPE,” Jpn. J. Appl. Phys. 27, L964–L967 (1988).
[CrossRef]

A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, “Thick GaN epitaxial with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys. 36, L899–L902 (1997).
[CrossRef]

K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power In-GaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 40, L583–L585 (2001).
[CrossRef]

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaNbased near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431–L1433 (2002).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(color online) Structures for the (a) standard LED (std-LED), (b) patterned SiO2 array LED (P-SiO2-LED), (c) micro mirror array LED (MMA-LED), and (d) orientation of the hexagonal array (top view).

Fig. 2.
Fig. 2.

SEM pictures of the cross-sectional view for (a) P-SiO2-LED, and (b) MMA-LED.

Fig. 3.
Fig. 3.

TEM pictures of the cross-sectional view for the MMA-LED, viewed through (112̄0) direction of GaN.

Fig. 4.
Fig. 4.

TEM pictures of the cross-sectional view for (a) the epitaxial structure of the In-GaN/GaN MQWs and (b) close-up view.

Fig. 5.
Fig. 5.

Room temperature photo-luminescence spectra for std-LED, P-SiO2-LED, and MMA-LED.

Fig. 6.
Fig. 6.

(color online) Optical microscope pictures and the blue EL images, driving at 5mA, for (a) std-LED, (b) P-SiO2-LED, and (c) MMA-LED.

Fig. 7.
Fig. 7.

(color online) I-V curves for the LEDs. Inset is the I-V curves in the reversed bias.

Fig. 8.
Fig. 8.

(color online) (a) The electro-luminescence spectra driving at 20mA, (b) optical output power vs. forward current for the LEDs.

Fig. 9.
Fig. 9.

(color online) 3-D far field intensity distribution for (a) std-LED, (b) P-SiO2-LED, (c) MMA-LED, and (d) 2-D far field intensity distribution for three types LED.

Fig. 10.
Fig. 10.

(color online) Diffraction measurement configuration and the diffraction distribution for (a) sapphire/GaN-template, (b) sapphire/GaN-template/P-SiO2-array, and (c) sapphire/GaN-template/MMA.

Fig. 11.
Fig. 11.

(color online) (a) Experimental setup for measuring the intensity distributions of the diffraction orders and (b)~(f) intensity distribution of the diffraction orders for different angle of incidence (θi) for sapphire/GaN-template (black line), sapphire/GaN-template/P-SiO2-array (red line), and sapphire/GaN-template/MMA (blue line).

Tables (1)

Tables Icon

Table 1. Electrical and optical properties of the LEDs.

Metrics