Abstract

We report the electrically pumped wavelength-tunable ultraviolet random lasing from MgxZn1-xO films with different bandgap energies, which act as the semiconductor components in metal-insulator- semiconductor (MIS) structures fabricated on Si substrates. When the metal (Au herein) gates of the MIS structures are applied with sufficiently high positive voltages, random lasing from the MgxZn1-xO films occurs, featuring a series of narrow spikes in the emitted spectra. Overall, the central wavelength of the random lasing spectrum is tuned from ~377 to 352 nm with the increase of x value in MgxZn1-xO from 0 to 0.35. The mechanism for the electrically pumped random lasing has been tentatively elucidated taking into account both the multiple optical scattering and the optical gain proceeding in the MgxZn1-xO films.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
    [CrossRef]
  2. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [CrossRef]
  3. S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84(17), 3244–3246 (2004).
    [CrossRef]
  4. L. K. Teha, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett. 91(16), 161116 (2007).
    [CrossRef]
  5. A. Kumar, S. F. Yu, and X. F. Li, “Random laser action in dielectric-metal-dielectric surface Plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
    [CrossRef]
  6. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
    [CrossRef]
  7. J. Fallert, R. J. B. Dietz, M. Hauser, F. Stelzl, C. Klingshirn, and H. Kalt, “Random lasing in ZnO nanocrystals,” J. Lumin. 129(12), 1685–1688 (2009).
    [CrossRef]
  8. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466–2648 (1998).
    [CrossRef]
  9. H. Y. Yang, S. F. Yu, and S. P. Lau, “Wide tunable ultraviolet random lasing action from ZnMgO thin films,” J. Cryst. Growth 312(1), 16–18 (2009).
    [CrossRef]
  10. H. Y. Yang, S. P. Lau, S. F. Yu, M. Tanemura, T. Okita, H. Hatano, K. S. Teng, and S. P. Wilks, “Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles,” Appl. Phys. Lett. 89(8), 081107 (2006).
    [CrossRef]
  11. H. C. Hsu, C. Y. Wu, H. M. Cheng, and W. F. Hsieh, “Band gap engineering and stimulated emission of ZnMgO nanowires,” Appl. Phys. Lett. 89(1), 013101 (2006).
    [CrossRef]
  12. X. Y. Ma, P. L. Chen, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
    [CrossRef]
  13. P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: dependence on carrier transport,” Opt. Express 17(6), 4712–4717 (2009).
    [CrossRef] [PubMed]
  14. X. Y. Ma, J. W. Pan, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang, “Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si,” Opt. Express 17(16), 14426–14433 (2009).
    [CrossRef] [PubMed]
  15. P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “347 nm ultraviolet electroluminescence from MgxZn1−xO-based light emitting devices,” Appl. Phys. Lett. 90(25), 251115 (2007).
    [CrossRef]
  16. J. Zeng, S. Wang, P. Tao, and J. C. Xu, “Luminescence properties of nanostructure MgZnO prepared by thermal oxidation,” J. Alloy. Comp. 476(1-2), 60–63 (2009).
    [CrossRef]
  17. Y. Ogawa and S. Fujihara, “Blue Luminescence of MgZnO and CdZnO Films Deposited at Low Temperatures,” J. Electrochem. Soc. 154(9), J283–J288 (2007).
    [CrossRef]
  18. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [CrossRef]
  19. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004).
    [CrossRef] [PubMed]

2009

A. Kumar, S. F. Yu, and X. F. Li, “Random laser action in dielectric-metal-dielectric surface Plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[CrossRef]

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

J. Fallert, R. J. B. Dietz, M. Hauser, F. Stelzl, C. Klingshirn, and H. Kalt, “Random lasing in ZnO nanocrystals,” J. Lumin. 129(12), 1685–1688 (2009).
[CrossRef]

H. Y. Yang, S. F. Yu, and S. P. Lau, “Wide tunable ultraviolet random lasing action from ZnMgO thin films,” J. Cryst. Growth 312(1), 16–18 (2009).
[CrossRef]

J. Zeng, S. Wang, P. Tao, and J. C. Xu, “Luminescence properties of nanostructure MgZnO prepared by thermal oxidation,” J. Alloy. Comp. 476(1-2), 60–63 (2009).
[CrossRef]

P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: dependence on carrier transport,” Opt. Express 17(6), 4712–4717 (2009).
[CrossRef] [PubMed]

X. Y. Ma, J. W. Pan, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang, “Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si,” Opt. Express 17(16), 14426–14433 (2009).
[CrossRef] [PubMed]

2008

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

2007

Y. Ogawa and S. Fujihara, “Blue Luminescence of MgZnO and CdZnO Films Deposited at Low Temperatures,” J. Electrochem. Soc. 154(9), J283–J288 (2007).
[CrossRef]

X. Y. Ma, P. L. Chen, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
[CrossRef]

P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “347 nm ultraviolet electroluminescence from MgxZn1−xO-based light emitting devices,” Appl. Phys. Lett. 90(25), 251115 (2007).
[CrossRef]

L. K. Teha, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett. 91(16), 161116 (2007).
[CrossRef]

2006

H. Y. Yang, S. P. Lau, S. F. Yu, M. Tanemura, T. Okita, H. Hatano, K. S. Teng, and S. P. Wilks, “Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles,” Appl. Phys. Lett. 89(8), 081107 (2006).
[CrossRef]

H. C. Hsu, C. Y. Wu, H. M. Cheng, and W. F. Hsieh, “Band gap engineering and stimulated emission of ZnMgO nanowires,” Appl. Phys. Lett. 89(1), 013101 (2006).
[CrossRef]

2004

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004).
[CrossRef] [PubMed]

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84(17), 3244–3246 (2004).
[CrossRef]

1999

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

1998

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466–2648 (1998).
[CrossRef]

Cao, H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Chen, P. L.

X. Y. Ma, J. W. Pan, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang, “Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si,” Opt. Express 17(16), 14426–14433 (2009).
[CrossRef] [PubMed]

P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: dependence on carrier transport,” Opt. Express 17(6), 4712–4717 (2009).
[CrossRef] [PubMed]

P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “347 nm ultraviolet electroluminescence from MgxZn1−xO-based light emitting devices,” Appl. Phys. Lett. 90(25), 251115 (2007).
[CrossRef]

X. Y. Ma, P. L. Chen, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
[CrossRef]

Cheng, H. M.

H. C. Hsu, C. Y. Wu, H. M. Cheng, and W. F. Hsieh, “Band gap engineering and stimulated emission of ZnMgO nanowires,” Appl. Phys. Lett. 89(1), 013101 (2006).
[CrossRef]

Dai, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Dietz, R. J. B.

J. Fallert, R. J. B. Dietz, M. Hauser, F. Stelzl, C. Klingshirn, and H. Kalt, “Random lasing in ZnO nanocrystals,” J. Lumin. 129(12), 1685–1688 (2009).
[CrossRef]

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Fallert, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

J. Fallert, R. J. B. Dietz, M. Hauser, F. Stelzl, C. Klingshirn, and H. Kalt, “Random lasing in ZnO nanocrystals,” J. Lumin. 129(12), 1685–1688 (2009).
[CrossRef]

Fujihara, S.

Y. Ogawa and S. Fujihara, “Blue Luminescence of MgZnO and CdZnO Films Deposited at Low Temperatures,” J. Electrochem. Soc. 154(9), J283–J288 (2007).
[CrossRef]

Hatano, H.

H. Y. Yang, S. P. Lau, S. F. Yu, M. Tanemura, T. Okita, H. Hatano, K. S. Teng, and S. P. Wilks, “Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles,” Appl. Phys. Lett. 89(8), 081107 (2006).
[CrossRef]

Hauser, M.

J. Fallert, R. J. B. Dietz, M. Hauser, F. Stelzl, C. Klingshirn, and H. Kalt, “Random lasing in ZnO nanocrystals,” J. Lumin. 129(12), 1685–1688 (2009).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Hsieh, W. F.

H. C. Hsu, C. Y. Wu, H. M. Cheng, and W. F. Hsieh, “Band gap engineering and stimulated emission of ZnMgO nanowires,” Appl. Phys. Lett. 89(1), 013101 (2006).
[CrossRef]

Hsu, H. C.

H. C. Hsu, C. Y. Wu, H. M. Cheng, and W. F. Hsieh, “Band gap engineering and stimulated emission of ZnMgO nanowires,” Appl. Phys. Lett. 89(1), 013101 (2006).
[CrossRef]

Kalt, H.

J. Fallert, R. J. B. Dietz, M. Hauser, F. Stelzl, C. Klingshirn, and H. Kalt, “Random lasing in ZnO nanocrystals,” J. Lumin. 129(12), 1685–1688 (2009).
[CrossRef]

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Kawasaki, M.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466–2648 (1998).
[CrossRef]

Klingshirn, C.

J. Fallert, R. J. B. Dietz, M. Hauser, F. Stelzl, C. Klingshirn, and H. Kalt, “Random lasing in ZnO nanocrystals,” J. Lumin. 129(12), 1685–1688 (2009).
[CrossRef]

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Koida, T.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466–2648 (1998).
[CrossRef]

Koinuma, H.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466–2648 (1998).
[CrossRef]

Kumar, A.

A. Kumar, S. F. Yu, and X. F. Li, “Random laser action in dielectric-metal-dielectric surface Plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[CrossRef]

Lau, S. P.

H. Y. Yang, S. F. Yu, and S. P. Lau, “Wide tunable ultraviolet random lasing action from ZnMgO thin films,” J. Cryst. Growth 312(1), 16–18 (2009).
[CrossRef]

L. K. Teha, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett. 91(16), 161116 (2007).
[CrossRef]

H. Y. Yang, S. P. Lau, S. F. Yu, M. Tanemura, T. Okita, H. Hatano, K. S. Teng, and S. P. Wilks, “Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles,” Appl. Phys. Lett. 89(8), 081107 (2006).
[CrossRef]

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84(17), 3244–3246 (2004).
[CrossRef]

Lee, H. W.

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84(17), 3244–3246 (2004).
[CrossRef]

Li, D. S.

X. Y. Ma, J. W. Pan, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang, “Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si,” Opt. Express 17(16), 14426–14433 (2009).
[CrossRef] [PubMed]

P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: dependence on carrier transport,” Opt. Express 17(6), 4712–4717 (2009).
[CrossRef] [PubMed]

P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “347 nm ultraviolet electroluminescence from MgxZn1−xO-based light emitting devices,” Appl. Phys. Lett. 90(25), 251115 (2007).
[CrossRef]

X. Y. Ma, P. L. Chen, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
[CrossRef]

Li, X. F.

A. Kumar, S. F. Yu, and X. F. Li, “Random laser action in dielectric-metal-dielectric surface Plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[CrossRef]

Ma, X. Y.

P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: dependence on carrier transport,” Opt. Express 17(6), 4712–4717 (2009).
[CrossRef] [PubMed]

X. Y. Ma, J. W. Pan, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang, “Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si,” Opt. Express 17(16), 14426–14433 (2009).
[CrossRef] [PubMed]

X. Y. Ma, P. L. Chen, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
[CrossRef]

P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “347 nm ultraviolet electroluminescence from MgxZn1−xO-based light emitting devices,” Appl. Phys. Lett. 90(25), 251115 (2007).
[CrossRef]

Masubuchi, K.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466–2648 (1998).
[CrossRef]

Mujumdar, S.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004).
[CrossRef] [PubMed]

Ogawa, Y.

Y. Ogawa and S. Fujihara, “Blue Luminescence of MgZnO and CdZnO Films Deposited at Low Temperatures,” J. Electrochem. Soc. 154(9), J283–J288 (2007).
[CrossRef]

Ohtomo, A.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466–2648 (1998).
[CrossRef]

Okita, T.

H. Y. Yang, S. P. Lau, S. F. Yu, M. Tanemura, T. Okita, H. Hatano, K. S. Teng, and S. P. Wilks, “Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles,” Appl. Phys. Lett. 89(8), 081107 (2006).
[CrossRef]

Ong, H. C.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Pan, J. W.

Ricci, M.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004).
[CrossRef] [PubMed]

Sakurai, Y.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466–2648 (1998).
[CrossRef]

Sartor, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Schneider, D.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Segawa, Y.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466–2648 (1998).
[CrossRef]

Stelzl, F.

J. Fallert, R. J. B. Dietz, M. Hauser, F. Stelzl, C. Klingshirn, and H. Kalt, “Random lasing in ZnO nanocrystals,” J. Lumin. 129(12), 1685–1688 (2009).
[CrossRef]

Tanemura, M.

H. Y. Yang, S. P. Lau, S. F. Yu, M. Tanemura, T. Okita, H. Hatano, K. S. Teng, and S. P. Wilks, “Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles,” Appl. Phys. Lett. 89(8), 081107 (2006).
[CrossRef]

Tao, P.

J. Zeng, S. Wang, P. Tao, and J. C. Xu, “Luminescence properties of nanostructure MgZnO prepared by thermal oxidation,” J. Alloy. Comp. 476(1-2), 60–63 (2009).
[CrossRef]

Teha, L. K.

L. K. Teha, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett. 91(16), 161116 (2007).
[CrossRef]

Teng, K. S.

H. Y. Yang, S. P. Lau, S. F. Yu, M. Tanemura, T. Okita, H. Hatano, K. S. Teng, and S. P. Wilks, “Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles,” Appl. Phys. Lett. 89(8), 081107 (2006).
[CrossRef]

Torre, R.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004).
[CrossRef] [PubMed]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Wang, S.

J. Zeng, S. Wang, P. Tao, and J. C. Xu, “Luminescence properties of nanostructure MgZnO prepared by thermal oxidation,” J. Alloy. Comp. 476(1-2), 60–63 (2009).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004).
[CrossRef] [PubMed]

Wilks, S. P.

H. Y. Yang, S. P. Lau, S. F. Yu, M. Tanemura, T. Okita, H. Hatano, K. S. Teng, and S. P. Wilks, “Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles,” Appl. Phys. Lett. 89(8), 081107 (2006).
[CrossRef]

Wong, C. C.

L. K. Teha, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett. 91(16), 161116 (2007).
[CrossRef]

Wu, C. Y.

H. C. Hsu, C. Y. Wu, H. M. Cheng, and W. F. Hsieh, “Band gap engineering and stimulated emission of ZnMgO nanowires,” Appl. Phys. Lett. 89(1), 013101 (2006).
[CrossRef]

Wu, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Xu, J. C.

J. Zeng, S. Wang, P. Tao, and J. C. Xu, “Luminescence properties of nanostructure MgZnO prepared by thermal oxidation,” J. Alloy. Comp. 476(1-2), 60–63 (2009).
[CrossRef]

Yang, D. R.

P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: dependence on carrier transport,” Opt. Express 17(6), 4712–4717 (2009).
[CrossRef] [PubMed]

X. Y. Ma, J. W. Pan, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang, “Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si,” Opt. Express 17(16), 14426–14433 (2009).
[CrossRef] [PubMed]

X. Y. Ma, P. L. Chen, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
[CrossRef]

P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “347 nm ultraviolet electroluminescence from MgxZn1−xO-based light emitting devices,” Appl. Phys. Lett. 90(25), 251115 (2007).
[CrossRef]

Yang, H. Y.

H. Y. Yang, S. F. Yu, and S. P. Lau, “Wide tunable ultraviolet random lasing action from ZnMgO thin films,” J. Cryst. Growth 312(1), 16–18 (2009).
[CrossRef]

L. K. Teha, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett. 91(16), 161116 (2007).
[CrossRef]

H. Y. Yang, S. P. Lau, S. F. Yu, M. Tanemura, T. Okita, H. Hatano, K. S. Teng, and S. P. Wilks, “Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles,” Appl. Phys. Lett. 89(8), 081107 (2006).
[CrossRef]

Yang, Y.

Yasuda, T.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466–2648 (1998).
[CrossRef]

Yoshida, Y.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466–2648 (1998).
[CrossRef]

Yu, S. F.

H. Y. Yang, S. F. Yu, and S. P. Lau, “Wide tunable ultraviolet random lasing action from ZnMgO thin films,” J. Cryst. Growth 312(1), 16–18 (2009).
[CrossRef]

A. Kumar, S. F. Yu, and X. F. Li, “Random laser action in dielectric-metal-dielectric surface Plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[CrossRef]

L. K. Teha, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett. 91(16), 161116 (2007).
[CrossRef]

H. Y. Yang, S. P. Lau, S. F. Yu, M. Tanemura, T. Okita, H. Hatano, K. S. Teng, and S. P. Wilks, “Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles,” Appl. Phys. Lett. 89(8), 081107 (2006).
[CrossRef]

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84(17), 3244–3246 (2004).
[CrossRef]

Yuen, C.

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84(17), 3244–3246 (2004).
[CrossRef]

Zeng, J.

J. Zeng, S. Wang, P. Tao, and J. C. Xu, “Luminescence properties of nanostructure MgZnO prepared by thermal oxidation,” J. Alloy. Comp. 476(1-2), 60–63 (2009).
[CrossRef]

Zhang, H.

Zhang, Y. Y.

P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: dependence on carrier transport,” Opt. Express 17(6), 4712–4717 (2009).
[CrossRef] [PubMed]

P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “347 nm ultraviolet electroluminescence from MgxZn1−xO-based light emitting devices,” Appl. Phys. Lett. 90(25), 251115 (2007).
[CrossRef]

X. Y. Ma, P. L. Chen, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
[CrossRef]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

Appl. Phys. Lett.

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett. 84(17), 3244–3246 (2004).
[CrossRef]

L. K. Teha, C. C. Wong, H. Y. Yang, S. P. Lau, and S. F. Yu, “Lasing in electrodeposited ZnO inverse opal,” Appl. Phys. Lett. 91(16), 161116 (2007).
[CrossRef]

A. Kumar, S. F. Yu, and X. F. Li, “Random laser action in dielectric-metal-dielectric surface Plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998).
[CrossRef]

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466–2648 (1998).
[CrossRef]

H. Y. Yang, S. P. Lau, S. F. Yu, M. Tanemura, T. Okita, H. Hatano, K. S. Teng, and S. P. Wilks, “Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles,” Appl. Phys. Lett. 89(8), 081107 (2006).
[CrossRef]

H. C. Hsu, C. Y. Wu, H. M. Cheng, and W. F. Hsieh, “Band gap engineering and stimulated emission of ZnMgO nanowires,” Appl. Phys. Lett. 89(1), 013101 (2006).
[CrossRef]

X. Y. Ma, P. L. Chen, D. S. Li, Y. Y. Zhang, and D. R. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett. 91(25), 251109 (2007).
[CrossRef]

P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, “347 nm ultraviolet electroluminescence from MgxZn1−xO-based light emitting devices,” Appl. Phys. Lett. 90(25), 251115 (2007).
[CrossRef]

J. Alloy. Comp.

J. Zeng, S. Wang, P. Tao, and J. C. Xu, “Luminescence properties of nanostructure MgZnO prepared by thermal oxidation,” J. Alloy. Comp. 476(1-2), 60–63 (2009).
[CrossRef]

J. Cryst. Growth

H. Y. Yang, S. F. Yu, and S. P. Lau, “Wide tunable ultraviolet random lasing action from ZnMgO thin films,” J. Cryst. Growth 312(1), 16–18 (2009).
[CrossRef]

J. Electrochem. Soc.

Y. Ogawa and S. Fujihara, “Blue Luminescence of MgZnO and CdZnO Films Deposited at Low Temperatures,” J. Electrochem. Soc. 154(9), J283–J288 (2007).
[CrossRef]

J. Lumin.

J. Fallert, R. J. B. Dietz, M. Hauser, F. Stelzl, C. Klingshirn, and H. Kalt, “Random lasing in ZnO nanocrystals,” J. Lumin. 129(12), 1685–1688 (2009).
[CrossRef]

Nat. Photonics

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Nat. Phys.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004).
[CrossRef] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a). XRD patterns of the MgxZn1-xO films with different nominal compositions. (b). Plan-view FESEM images of the MgxZn1-xO films with different nominal compositions: (i) x = 0, (ii) x = 0.05, (iii) x = 0.15, (iv) x = 0.2, (v) x = 0.25, (vi) x = 0.35.

Fig. 2
Fig. 2

(a). PL spectrum of Mg0.15Zn0.85O film. (b). Decrease of UV peak wavelength with the increase of Mg content in the MgxZn1-xO films.

Fig. 3
Fig. 3

(a). EL spectra of the Mg0.15Zn0.85O film-based MIS device under different forward bias voltages/currents. (b). Detected output power as a function of injection current for the Mg0.15Zn0.85O film-based MIS device.

Fig. 4
Fig. 4

EL spectra of different MgxZn1-xO film-based MIS devices under certain forward bias voltages/currents.

Fig. 5
Fig. 5

(a). Schematic energy band diagram of a sufficiently forward-biased MIS structure of Au/SiO2/ MgxZn1-xO. (b). The density of states and energy distribution of electrons and holes in the conduction and valence bands respectively in the band-downward region adjacent to SiO2/MgxZn1-xO interface under forward bias such that EFn − EFp > Eg. (c). Schematic diagram for the optical gain as a function of photon energy.

Metrics