Abstract

We report on the material response during the cooling phase in bulk fused silica following localized energy deposition via laser-induced breakdown. We use a time-resolved microscope system to acquire images of the region of energy deposition at delay times covering the entire timeline of events. In addition, this system is configured to perform pump-and-probe damage testing measurements to investigate the evolution of the transient absorption of the modified material. The main features of a damage site are established at ~30 ns after the pump pulse, i.e. cracks reach their final size within this time frame. The results reveal that the cracks and melted core exhibit a transient absorption up until about 300 ns and 200 μs delay times, respectively, and suggest that the melted region returns to solid phase at ~70 ms delay.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. . C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laserinduced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
    [CrossRef] [PubMed]
  2. . S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
    [CrossRef] [PubMed]
  3. . B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
    [CrossRef]
  4. . X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88, 061502 (2006).
    [CrossRef]
  5. . H. Jiang, J. McNary, H. W. K. Tom, M. Yan, H. B. Radousky, and S. G. Demos, “Nanosecond time-resolved multiprobe imaging of laser damage in transparent solids,” Appl. Phys. Lett. 81, 3149–3151 (2002).
    [CrossRef]
  6. . E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996).
    [CrossRef] [PubMed]
  7. . C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
    [CrossRef]
  8. . K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31, 620–625 (2006).
    [CrossRef]
  9. . S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10, 1444–1450 (2002).
    [PubMed]
  10. . From http://www.corning.com/docs/specialtymaterials/pisheets/H0607_hpfs_ Standard_ProductSheet.pdf.
  11. . M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74–81 (2004).
    [CrossRef]
  12. . J. Bude, G. Guss, M. Matthews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,”Proc. SPIE 6720, 672009 (2007).
    [CrossRef]
  13. . C. Wei, J. Shao, H. He, K. Yi, and Z. Fan, “Mechanism initiated by nanoabsorber for UV nanosecond-pulsedriven damage of dielectric coatings,” Opt. Express 16, 3376–3382 (2008).
    [CrossRef] [PubMed]
  14. . E. N. Glezer, Y. Siegal, L. Huang, and E. Mazur, “Laser induced bandgap collapse in GaAs,” Phys. Rev. B 51, 6959–6970 (1995).
    [CrossRef]
  15. . L. Davison and R. A. Graham, “Shock compression of solids,” Phys. Rep. 55, 255–379 (1979).
    [CrossRef]
  16. . P. Harris, “Band-gap collapse in uniaxially strained (shocked) elastic germanium,” J. Appl. Phys. 51, 6033–6034 (1980).
    [CrossRef]
  17. . K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62, 8584–8587 (2000).
    [CrossRef]
  18. . D. G. Hicks, T. R. Boehly, J. H. Eggert, J. E. Miller, P. M. Celliers, and G. W. Collins, “Dissociation of liquid silica at high pressures and temperatures,” Phys. Rev. Lett. 97, 025502 (2006).
    [CrossRef] [PubMed]
  19. . A. M. Lindenberg et al., “X-ray Diffuse scattering measurements of nucleation dynamics at femtosecond resolution,” Phys. Rev. Lett. 100, 135502 (2008).
    [CrossRef] [PubMed]

2008 (2)

. C. Wei, J. Shao, H. He, K. Yi, and Z. Fan, “Mechanism initiated by nanoabsorber for UV nanosecond-pulsedriven damage of dielectric coatings,” Opt. Express 16, 3376–3382 (2008).
[CrossRef] [PubMed]

. A. M. Lindenberg et al., “X-ray Diffuse scattering measurements of nucleation dynamics at femtosecond resolution,” Phys. Rev. Lett. 100, 135502 (2008).
[CrossRef] [PubMed]

2007 (1)

. J. Bude, G. Guss, M. Matthews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,”Proc. SPIE 6720, 672009 (2007).
[CrossRef]

2006 (4)

. D. G. Hicks, T. R. Boehly, J. H. Eggert, J. E. Miller, P. M. Celliers, and G. W. Collins, “Dissociation of liquid silica at high pressures and temperatures,” Phys. Rev. Lett. 97, 025502 (2006).
[CrossRef] [PubMed]

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

. X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88, 061502 (2006).
[CrossRef]

. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31, 620–625 (2006).
[CrossRef]

2004 (2)

. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laserinduced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

. M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74–81 (2004).
[CrossRef]

2002 (2)

. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10, 1444–1450 (2002).
[PubMed]

. H. Jiang, J. McNary, H. W. K. Tom, M. Yan, H. B. Radousky, and S. G. Demos, “Nanosecond time-resolved multiprobe imaging of laser damage in transparent solids,” Appl. Phys. Lett. 81, 3149–3151 (2002).
[CrossRef]

2001 (1)

2000 (1)

. K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62, 8584–8587 (2000).
[CrossRef]

1996 (2)

. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996).
[CrossRef] [PubMed]

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

1995 (1)

. E. N. Glezer, Y. Siegal, L. Huang, and E. Mazur, “Laser induced bandgap collapse in GaAs,” Phys. Rev. B 51, 6959–6970 (1995).
[CrossRef]

1980 (1)

. P. Harris, “Band-gap collapse in uniaxially strained (shocked) elastic germanium,” J. Appl. Phys. 51, 6033–6034 (1980).
[CrossRef]

1979 (1)

. L. Davison and R. A. Graham, “Shock compression of solids,” Phys. Rep. 55, 255–379 (1979).
[CrossRef]

Boehly, T. R.

. D. G. Hicks, T. R. Boehly, J. H. Eggert, J. E. Miller, P. M. Celliers, and G. W. Collins, “Dissociation of liquid silica at high pressures and temperatures,” Phys. Rev. Lett. 97, 025502 (2006).
[CrossRef] [PubMed]

Brodeur, A.

Bude, J.

. J. Bude, G. Guss, M. Matthews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,”Proc. SPIE 6720, 672009 (2007).
[CrossRef]

Callan, J. P.

Carr, C. W.

. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laserinduced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

Celliers, P. M.

. D. G. Hicks, T. R. Boehly, J. H. Eggert, J. E. Miller, P. M. Celliers, and G. W. Collins, “Dissociation of liquid silica at high pressures and temperatures,” Phys. Rev. Lett. 97, 025502 (2006).
[CrossRef] [PubMed]

Collins, G. W.

. D. G. Hicks, T. R. Boehly, J. H. Eggert, J. E. Miller, P. M. Celliers, and G. W. Collins, “Dissociation of liquid silica at high pressures and temperatures,” Phys. Rev. Lett. 97, 025502 (2006).
[CrossRef] [PubMed]

Davison, L.

. L. Davison and R. A. Graham, “Shock compression of solids,” Phys. Rep. 55, 255–379 (1979).
[CrossRef]

Demos, S. G.

. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laserinduced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10, 1444–1450 (2002).
[PubMed]

. H. Jiang, J. McNary, H. W. K. Tom, M. Yan, H. B. Radousky, and S. G. Demos, “Nanosecond time-resolved multiprobe imaging of laser damage in transparent solids,” Appl. Phys. Lett. 81, 3149–3151 (2002).
[CrossRef]

Eggert, J. H.

. D. G. Hicks, T. R. Boehly, J. H. Eggert, J. E. Miller, P. M. Celliers, and G. W. Collins, “Dissociation of liquid silica at high pressures and temperatures,” Phys. Rev. Lett. 97, 025502 (2006).
[CrossRef] [PubMed]

Fan, Z.

Feit, M. D.

. M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74–81 (2004).
[CrossRef]

. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laserinduced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Finlay, R. J.

Fujimoto, J.

Gamaly, E. G.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Garcia, J. F.

Glezer, E. N.

Graham, R. A.

. L. Davison and R. A. Graham, “Shock compression of solids,” Phys. Rep. 55, 255–379 (1979).
[CrossRef]

Greif, R.

. X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88, 061502 (2006).
[CrossRef]

Guss, G.

. J. Bude, G. Guss, M. Matthews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,”Proc. SPIE 6720, 672009 (2007).
[CrossRef]

Hallo, L.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Harris, P.

. P. Harris, “Band-gap collapse in uniaxially strained (shocked) elastic germanium,” J. Appl. Phys. 51, 6033–6034 (1980).
[CrossRef]

He, H.

Her, T. H.

Herman, S.

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Hicks, D. G.

. D. G. Hicks, T. R. Boehly, J. H. Eggert, J. E. Miller, P. M. Celliers, and G. W. Collins, “Dissociation of liquid silica at high pressures and temperatures,” Phys. Rev. Lett. 97, 025502 (2006).
[CrossRef] [PubMed]

Huang, L.

Ikushima, A. J.

. K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62, 8584–8587 (2000).
[CrossRef]

Itoh, K.

. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31, 620–625 (2006).
[CrossRef]

Jiang, H.

. H. Jiang, J. McNary, H. W. K. Tom, M. Yan, H. B. Radousky, and S. G. Demos, “Nanosecond time-resolved multiprobe imaging of laser damage in transparent solids,” Appl. Phys. Lett. 81, 3149–3151 (2002).
[CrossRef]

Juodkazis, S.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Lindenberg, A. M.

. A. M. Lindenberg et al., “X-ray Diffuse scattering measurements of nucleation dynamics at femtosecond resolution,” Phys. Rev. Lett. 100, 135502 (2008).
[CrossRef] [PubMed]

Luther-Davies, B.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Mao, S. S.

. X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88, 061502 (2006).
[CrossRef]

Mao, X.

. X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88, 061502 (2006).
[CrossRef]

Matthews, M.

. J. Bude, G. Guss, M. Matthews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,”Proc. SPIE 6720, 672009 (2007).
[CrossRef]

Mazur, E.

McNary, J.

. H. Jiang, J. McNary, H. W. K. Tom, M. Yan, H. B. Radousky, and S. G. Demos, “Nanosecond time-resolved multiprobe imaging of laser damage in transparent solids,” Appl. Phys. Lett. 81, 3149–3151 (2002).
[CrossRef]

Miller, J. E.

. D. G. Hicks, T. R. Boehly, J. H. Eggert, J. E. Miller, P. M. Celliers, and G. W. Collins, “Dissociation of liquid silica at high pressures and temperatures,” Phys. Rev. Lett. 97, 025502 (2006).
[CrossRef] [PubMed]

Milosavljevic, M.

Minoshima, K.

Misawa, H.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Nicolai, P.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Nishimura, K.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Nolte, S.

. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31, 620–625 (2006).
[CrossRef]

Perry, M. D.

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Radousky, H. B.

. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laserinduced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

. H. Jiang, J. McNary, H. W. K. Tom, M. Yan, H. B. Radousky, and S. G. Demos, “Nanosecond time-resolved multiprobe imaging of laser damage in transparent solids,” Appl. Phys. Lett. 81, 3149–3151 (2002).
[CrossRef]

Rubenchik, A. M.

. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laserinduced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

. M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74–81 (2004).
[CrossRef]

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Russo, R. E.

. X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88, 061502 (2006).
[CrossRef]

Saito, K.

. K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62, 8584–8587 (2000).
[CrossRef]

Schaffer, C. B.

. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31, 620–625 (2006).
[CrossRef]

. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
[CrossRef]

Shao, J.

Shore, B. W.

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Siegal, Y.

. E. N. Glezer, Y. Siegal, L. Huang, and E. Mazur, “Laser induced bandgap collapse in GaAs,” Phys. Rev. B 51, 6959–6970 (1995).
[CrossRef]

Spaeth, M. L.

. J. Bude, G. Guss, M. Matthews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,”Proc. SPIE 6720, 672009 (2007).
[CrossRef]

Staggs, M.

Stuart, B. C.

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Tanaka, S.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Tikhonchuk, V. T.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Tom, H. W. K.

. H. Jiang, J. McNary, H. W. K. Tom, M. Yan, H. B. Radousky, and S. G. Demos, “Nanosecond time-resolved multiprobe imaging of laser damage in transparent solids,” Appl. Phys. Lett. 81, 3149–3151 (2002).
[CrossRef]

Watanabe, W.

. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31, 620–625 (2006).
[CrossRef]

Wei, C.

Wen, S.-B.

. X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88, 061502 (2006).
[CrossRef]

Yan, M.

. H. Jiang, J. McNary, H. W. K. Tom, M. Yan, H. B. Radousky, and S. G. Demos, “Nanosecond time-resolved multiprobe imaging of laser damage in transparent solids,” Appl. Phys. Lett. 81, 3149–3151 (2002).
[CrossRef]

Yi, K.

Zeng, X.

. X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88, 061502 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

. X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88, 061502 (2006).
[CrossRef]

. H. Jiang, J. McNary, H. W. K. Tom, M. Yan, H. B. Radousky, and S. G. Demos, “Nanosecond time-resolved multiprobe imaging of laser damage in transparent solids,” Appl. Phys. Lett. 81, 3149–3151 (2002).
[CrossRef]

J. Appl. Phys. (1)

. P. Harris, “Band-gap collapse in uniaxially strained (shocked) elastic germanium,” J. Appl. Phys. 51, 6033–6034 (1980).
[CrossRef]

MRS Bull. (1)

. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31, 620–625 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rep. (1)

. L. Davison and R. A. Graham, “Shock compression of solids,” Phys. Rep. 55, 255–379 (1979).
[CrossRef]

Phys. Rev. B (3)

. K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62, 8584–8587 (2000).
[CrossRef]

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

. E. N. Glezer, Y. Siegal, L. Huang, and E. Mazur, “Laser induced bandgap collapse in GaAs,” Phys. Rev. B 51, 6959–6970 (1995).
[CrossRef]

Phys. Rev. Lett. (4)

. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laserinduced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

. D. G. Hicks, T. R. Boehly, J. H. Eggert, J. E. Miller, P. M. Celliers, and G. W. Collins, “Dissociation of liquid silica at high pressures and temperatures,” Phys. Rev. Lett. 97, 025502 (2006).
[CrossRef] [PubMed]

. A. M. Lindenberg et al., “X-ray Diffuse scattering measurements of nucleation dynamics at femtosecond resolution,” Phys. Rev. Lett. 100, 135502 (2008).
[CrossRef] [PubMed]

Proc. SPIE (2)

. M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74–81 (2004).
[CrossRef]

. J. Bude, G. Guss, M. Matthews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,”Proc. SPIE 6720, 672009 (2007).
[CrossRef]

Other (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental layouts depicting (a) time-resolved microscopic imaging system in the trans-illumination (TR) and back-scattering (BS) geometries and (b) non-collinear pump and probe damage testing geometry.

Fig. 2.
Fig. 2.

Typical images of the transient at 55 ns delay and final states of the same damage site induced by the 355-nm pump pulse in the bulk of fused silica (top) and ratio (final divided by transient) images with the same contrast for pump and probe time delays between 50 ns and 500 μs (bottom).

Fig. 3.
Fig. 3.

Examples of contrast-enhanced (a) transient at 60 ms delay, (b) final and (c) ratio (transient divided by final) images of the same bulk damage site in fused silica.

Fig. 4.
Fig. 4.

(a) Light-scattering images (with the same color log-scale) and (b) the average damage cross-sectional area of typical intrinsic damage sites in bulk fused silica versus pump and probe time delay and fluence.

Fig. 5.
Fig. 5.

SEM image of the axial cross section of a typical bulk damage site in fused silica using ~200 μJ per pulse. The site was ~5 mm from the sample surface with the laser pulse propagating into the page.

Metrics