Abstract

An electrically pumped InAs/GaAs quantum dot laser on a Si substrate has been demonstrated. The double-hetero laser structure was grown on a GaAs substrate by metal-organic chemical vapor deposition and layer-transferred onto a Si substrate by GaAs/Si wafer bonding mediated by a 380-nm-thick Au-Ge-Ni alloy layer. This broad-area Fabry-Perot laser exhibits InAs quantum dot ground state lasing at 1.31 μm at room temperature with a threshold current density of 600 A/cm2.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  2. D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 051117 (2008).
    [CrossRef]
  3. T. Okumura, T. Maruyama, H. Yonezawa, N. Nishiyama, and S. Arai, “Injection-type GaInAsP-InP-Si distributed-feedback laser directly bonded on silicon-on-insulator substrate,” IEEE Photon. Technol. Lett. 21(5), 283–285 (2009).
    [CrossRef]
  4. X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett. 34(9), 1345–1347 (2009).
    [CrossRef] [PubMed]
  5. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [CrossRef]
  6. Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett. 42(2), 121–122 (2006).
    [CrossRef]
  7. K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express 17(9), 7036–7042 (2009).
    [CrossRef] [PubMed]
  8. D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, “Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics,” Appl. Phys. Lett. 94(10), 103116 (2009).
    [CrossRef]
  9. H. C. Lin, K. L. Chang, K. C. Hsieh, K. Y. Cheng, and W. H. Wang, “Metallic wafer bonding for the fabrication of long-wavelength vertical-cavity surface-emitting lasers,” J. Appl. Phys. 92(7), 4132–4134 (2002).
    [CrossRef]
  10. E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
    [CrossRef]
  11. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [CrossRef]
  12. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
    [CrossRef] [PubMed]

2009 (5)

T. Okumura, T. Maruyama, H. Yonezawa, N. Nishiyama, and S. Arai, “Injection-type GaInAsP-InP-Si distributed-feedback laser directly bonded on silicon-on-insulator substrate,” IEEE Photon. Technol. Lett. 21(5), 283–285 (2009).
[CrossRef]

X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett. 34(9), 1345–1347 (2009).
[CrossRef] [PubMed]

K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express 17(9), 7036–7042 (2009).
[CrossRef] [PubMed]

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, “Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics,” Appl. Phys. Lett. 94(10), 103116 (2009).
[CrossRef]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[CrossRef] [PubMed]

2008 (1)

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 051117 (2008).
[CrossRef]

2006 (3)

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett. 42(2), 121–122 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

2002 (1)

H. C. Lin, K. L. Chang, K. C. Hsieh, K. Y. Cheng, and W. H. Wang, “Metallic wafer bonding for the fabrication of long-wavelength vertical-cavity surface-emitting lasers,” J. Appl. Phys. 92(7), 4132–4134 (2002).
[CrossRef]

1992 (1)

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[CrossRef]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Andrews, A. M.

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 051117 (2008).
[CrossRef]

Andrijasevic, D.

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 051117 (2008).
[CrossRef]

Arai, S.

T. Okumura, T. Maruyama, H. Yonezawa, N. Nishiyama, and S. Arai, “Injection-type GaInAsP-InP-Si distributed-feedback laser directly bonded on silicon-on-insulator substrate,” IEEE Photon. Technol. Lett. 21(5), 283–285 (2009).
[CrossRef]

Arakawa, Y.

K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express 17(9), 7036–7042 (2009).
[CrossRef] [PubMed]

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, “Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics,” Appl. Phys. Lett. 94(10), 103116 (2009).
[CrossRef]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Atwater, H. A.

X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett. 34(9), 1345–1347 (2009).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Austerer, M.

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 051117 (2008).
[CrossRef]

Bhattacharya, P.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett. 42(2), 121–122 (2006).
[CrossRef]

Bowers, J. E.

Broberg, B.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[CrossRef]

Chang, K. L.

H. C. Lin, K. L. Chang, K. C. Hsieh, K. Y. Cheng, and W. H. Wang, “Metallic wafer bonding for the fabrication of long-wavelength vertical-cavity surface-emitting lasers,” J. Appl. Phys. 92(7), 4132–4134 (2002).
[CrossRef]

Cheng, K. Y.

H. C. Lin, K. L. Chang, K. C. Hsieh, K. Y. Cheng, and W. H. Wang, “Metallic wafer bonding for the fabrication of long-wavelength vertical-cavity surface-emitting lasers,” J. Appl. Phys. 92(7), 4132–4134 (2002).
[CrossRef]

Cohen, O.

Diest, K. A.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Fang, A. W.

Friedrich, E. E. L.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[CrossRef]

Geluk, E. J.

Ghaffari, A.

Guimard, D.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, “Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics,” Appl. Phys. Lett. 94(10), 103116 (2009).
[CrossRef]

K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express 17(9), 7036–7042 (2009).
[CrossRef] [PubMed]

Hill, M. T.

Hsieh, K. C.

H. C. Lin, K. L. Chang, K. C. Hsieh, K. Y. Cheng, and W. H. Wang, “Metallic wafer bonding for the fabrication of long-wavelength vertical-cavity surface-emitting lasers,” J. Appl. Phys. 92(7), 4132–4134 (2002).
[CrossRef]

Huffaker, D. L.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett. 42(2), 121–122 (2006).
[CrossRef]

Ishida, M.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, “Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics,” Appl. Phys. Lett. 94(10), 103116 (2009).
[CrossRef]

Iwamoto, S.

Jones, R.

Karouta, F.

Klang, P.

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 051117 (2008).
[CrossRef]

Kondo, H.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, “Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics,” Appl. Phys. Lett. 94(10), 103116 (2009).
[CrossRef]

Leong, E. S. P.

Li, L.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, “Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics,” Appl. Phys. Lett. 94(10), 103116 (2009).
[CrossRef]

Lin, H. C.

H. C. Lin, K. L. Chang, K. C. Hsieh, K. Y. Cheng, and W. H. Wang, “Metallic wafer bonding for the fabrication of long-wavelength vertical-cavity surface-emitting lasers,” J. Appl. Phys. 92(7), 4132–4134 (2002).
[CrossRef]

Marell, M.

Maruyama, T.

T. Okumura, T. Maruyama, H. Yonezawa, N. Nishiyama, and S. Arai, “Injection-type GaInAsP-InP-Si distributed-feedback laser directly bonded on silicon-on-insulator substrate,” IEEE Photon. Technol. Lett. 21(5), 283–285 (2009).
[CrossRef]

Mi, Z.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett. 42(2), 121–122 (2006).
[CrossRef]

Nilsson, S.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[CrossRef]

Ning, C. Z.

Nishioka, M.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, “Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics,” Appl. Phys. Lett. 94(10), 103116 (2009).
[CrossRef]

Nishiyama, N.

T. Okumura, T. Maruyama, H. Yonezawa, N. Nishiyama, and S. Arai, “Injection-type GaInAsP-InP-Si distributed-feedback laser directly bonded on silicon-on-insulator substrate,” IEEE Photon. Technol. Lett. 21(5), 283–285 (2009).
[CrossRef]

Nomura, M.

Nötzel, R.

Oberg, M. G.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[CrossRef]

Oei, Y. S.

Okumura, T.

T. Okumura, T. Maruyama, H. Yonezawa, N. Nishiyama, and S. Arai, “Injection-type GaInAsP-InP-Si distributed-feedback laser directly bonded on silicon-on-insulator substrate,” IEEE Photon. Technol. Lett. 21(5), 283–285 (2009).
[CrossRef]

Paniccia, M. J.

Park, H.

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Scherer, A.

Schrenk, W.

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 051117 (2008).
[CrossRef]

Shearn, M. J.

Smalbrugge, B.

Smit, M. K.

Strasser, G.

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 051117 (2008).
[CrossRef]

Sudo, H.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, “Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics,” Appl. Phys. Lett. 94(10), 103116 (2009).
[CrossRef]

Sugawara, M.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, “Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics,” Appl. Phys. Lett. 94(10), 103116 (2009).
[CrossRef]

Sun, M.

Sun, X.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Tanabe, K.

Tanaka, Y.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, “Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics,” Appl. Phys. Lett. 94(10), 103116 (2009).
[CrossRef]

Valette, S.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[CrossRef]

van Veldhoven, P. J.

Wang, W. H.

H. C. Lin, K. L. Chang, K. C. Hsieh, K. Y. Cheng, and W. H. Wang, “Metallic wafer bonding for the fabrication of long-wavelength vertical-cavity surface-emitting lasers,” J. Appl. Phys. 92(7), 4132–4134 (2002).
[CrossRef]

Yamamoto, T.

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, “Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics,” Appl. Phys. Lett. 94(10), 103116 (2009).
[CrossRef]

Yang, J.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett. 42(2), 121–122 (2006).
[CrossRef]

Yariv, A.

Yonezawa, H.

T. Okumura, T. Maruyama, H. Yonezawa, N. Nishiyama, and S. Arai, “Injection-type GaInAsP-InP-Si distributed-feedback laser directly bonded on silicon-on-insulator substrate,” IEEE Photon. Technol. Lett. 21(5), 283–285 (2009).
[CrossRef]

Zadok, A.

Zhu, Y.

Appl. Phys. Lett. (3)

D. Andrijasevic, M. Austerer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding,” Appl. Phys. Lett. 92(5), 051117 (2008).
[CrossRef]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, “Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics,” Appl. Phys. Lett. 94(10), 103116 (2009).
[CrossRef]

Electron. Lett. (1)

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett. 42(2), 121–122 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Okumura, T. Maruyama, H. Yonezawa, N. Nishiyama, and S. Arai, “Injection-type GaInAsP-InP-Si distributed-feedback laser directly bonded on silicon-on-insulator substrate,” IEEE Photon. Technol. Lett. 21(5), 283–285 (2009).
[CrossRef]

J. Appl. Phys. (1)

H. C. Lin, K. L. Chang, K. C. Hsieh, K. Y. Cheng, and W. H. Wang, “Metallic wafer bonding for the fabrication of long-wavelength vertical-cavity surface-emitting lasers,” J. Appl. Phys. 92(7), 4132–4134 (2002).
[CrossRef]

J. Lightwave Technol. (1)

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol. 10(3), 336–340 (1992).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

RT photoluminescence spectrum and (inset) 1 × 1 μm atomic force microscope image of the as-grown InAs QDs grown by antimony-mediated MOCVD.

Fig. 2
Fig. 2

(a) Cross-sectional schematic of the fabricated InAs/GaAs QD laser on Si substrate. (b) Cross-sectional scanning electron microscope image of the QD laser structure layer-transferred onto a Si substrate.

Fig. 3
Fig. 3

Light-current characteristics of the laser (CL/CL, pulsed, RT). Insets show the electroluminescence spectra at J = 0.2 and 1.0 kA/cm2.

Metrics