Abstract

A wideband and fast tunable chromatic dispersion compensator is one of the key components for the future high-speed optical transmissions. We have so far proposed and demonstrated a new tunable dispersion compensation scheme called parametric tunable dispersion compensator (P-TDC), which is based on the combination of parametric frequency conversion and frequency dependent dispersive media. The P-TDC has many attractive features such as a seamlessly wideband operation, wide tunable range and fast dispersion tuning. In fact, with appropriate configurations of dispersive media, the P-TDC can compensate the dispersion slope of transmission fibers even though the second-order dispersion is small. In this paper, we use such a P-TDC scheme and successfully achieve high-speed optical transmissions over a second- and third-order dispersion managed dispersion shifted fiber (DSF) span. The transmission experiments show low-penalty 172 Gbit/s return-to-zero on-off-keying transmissions over 126-km DSF.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Vorbeck and R. Leppla, “Dispersion and Dispersion Slope Tolerance of 160-Gb/s Systems, Considering the Temperature Dependence of Chromatic Dispersion,” IEEE Photon. Technol. Lett. 15(10), 1470–1472 (2003).
    [CrossRef]
  2. S. Namiki, “Wide-Band and -Range Tunable Dispersion Compensation Through Parametric Wavelength Conversion and Dispersive Optical Fibers,” J. Lightwave Technol. 26(1), 28–35 (2008).
    [CrossRef]
  3. S. Namiki, “Tunable Dispersion Compensation Using Parametric Processes,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OWP1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWP1 http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11958
  4. C. Doerr, Optical Compensation of System Impairments,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThL1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-OThL1
  5. T. Kurosu and S. Namiki, “Continuously tunable 22 ns delay for wideband optical signals using a parametric delay-dispersion tuner,” Opt. Lett. 34(9), 1441–1443 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-9-1441 .
    [CrossRef] [PubMed]
  6. E. Myslivets, N. Alic, S. Moro, B. P. Kuo, R. M. Jopson, C. J. McKinstrie, and S. Radic, “Microsecond Parametric Optical Delays,” J. Lightwave Technol. 28, 448–455 (2010).
    [CrossRef]
  7. E. Myslivets, N. Alic, S. Moro, B. P. Kuo, R. M. Jopson, C. J. McKinstrie, M. Karlsson, and S. Radic, “1.56-micros continuously tunable parametric delay line for a 40-Gb/s signal,” Opt. Express 17(14), 11958–11964 (2009).
    [CrossRef] [PubMed]
  8. S. Namiki, “Wideband Tunable Dispersion Compensation of 126 km zero-DSF Using Parametric Processes,” in 34th European Conference and Exhibition on Optical Communication (ECOC2008), Technical Digest (CD), paper Tu.4.B.3.
  9. K. Tanizawa, T. Kurosu, and S. Namiki, “1.8-ps RZ-Pulse 43-Gbps Transmissions over 126-km DSF with Parametric Tunable Dispersion Compensation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThJ4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OThJ4
  10. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
    [CrossRef]
  11. P. Govind, Agrawal, “Fiber-Optic Communication Systems Third Edition,” (John Wiley & Sons, Inc., New York, 2002).
  12. M. Takahashi, K. Mukasa, and T. Yagi, “Full C-L Band Tunable Wavelength Conversion by Zero Dispersion and Zero Dispersion Slope HNLF,” in 35th European Conference and Exhibition on Optical Communication (ECOC2009), Technical Digest (CD), paper P1.08.
  13. M. Wandel, P. Kristensen, T. Veng, Y. Qian, Q. Le, and L. Grüner-Nielsen, “Dispersion compensating fibers for non zero dispersion fibers,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper WU1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2002-WU1
  14. T. Inoue, H. Tobioka, K. Igarashi, and S. Namiki, “Optical Pulse Compression Based on Stationary Rescaled Pulse Propagation in a Comblike Profiled Fiber,” J. Lightwave Technol. 24(7), 2510–2522 (2006).
    [CrossRef]
  15. P. A. Andrekson, “Optical techniques for high-bit-rate systems,” in Optical Fiber Communications Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper ThL6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-1995-ThL6
  16. C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, J. M. Chavez-Boggio, C. F. Marki, N. Alic, and S. Radic, “Optical Demultiplexing of 320 Gb/s to 8 × 40 Gb/s in Single Parametric Gate,” J. Lightwave Technol. 28(4), 434–442 (2010).
    [CrossRef]

2010 (2)

2009 (2)

2008 (1)

2006 (1)

2003 (1)

S. Vorbeck and R. Leppla, “Dispersion and Dispersion Slope Tolerance of 160-Gb/s Systems, Considering the Temperature Dependence of Chromatic Dispersion,” IEEE Photon. Technol. Lett. 15(10), 1470–1472 (2003).
[CrossRef]

1992 (1)

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

Alic, N.

Brès, C.-S.

Chavez-Boggio, J. M.

Igarashi, K.

Inoue, K.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

Inoue, T.

Jopson, R. M.

Karlsson, M.

Kuo, B. P.

Kuo, B. P.-P.

Kurosu, T.

Leppla, R.

S. Vorbeck and R. Leppla, “Dispersion and Dispersion Slope Tolerance of 160-Gb/s Systems, Considering the Temperature Dependence of Chromatic Dispersion,” IEEE Photon. Technol. Lett. 15(10), 1470–1472 (2003).
[CrossRef]

Marki, C. F.

McKinstrie, C. J.

Moro, S.

Myslivets, E.

Namiki, S.

Radic, S.

Toba, H.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

Tobioka, H.

Vorbeck, S.

S. Vorbeck and R. Leppla, “Dispersion and Dispersion Slope Tolerance of 160-Gb/s Systems, Considering the Temperature Dependence of Chromatic Dispersion,” IEEE Photon. Technol. Lett. 15(10), 1470–1472 (2003).
[CrossRef]

Wiberg, A. O. J.

IEEE Photon. Technol. Lett. (2)

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

S. Vorbeck and R. Leppla, “Dispersion and Dispersion Slope Tolerance of 160-Gb/s Systems, Considering the Temperature Dependence of Chromatic Dispersion,” IEEE Photon. Technol. Lett. 15(10), 1470–1472 (2003).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (1)

Opt. Lett. (1)

Other (8)

P. A. Andrekson, “Optical techniques for high-bit-rate systems,” in Optical Fiber Communications Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper ThL6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-1995-ThL6

P. Govind, Agrawal, “Fiber-Optic Communication Systems Third Edition,” (John Wiley & Sons, Inc., New York, 2002).

M. Takahashi, K. Mukasa, and T. Yagi, “Full C-L Band Tunable Wavelength Conversion by Zero Dispersion and Zero Dispersion Slope HNLF,” in 35th European Conference and Exhibition on Optical Communication (ECOC2009), Technical Digest (CD), paper P1.08.

M. Wandel, P. Kristensen, T. Veng, Y. Qian, Q. Le, and L. Grüner-Nielsen, “Dispersion compensating fibers for non zero dispersion fibers,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper WU1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2002-WU1

S. Namiki, “Tunable Dispersion Compensation Using Parametric Processes,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OWP1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWP1 http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11958

C. Doerr, Optical Compensation of System Impairments,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThL1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-OThL1

S. Namiki, “Wideband Tunable Dispersion Compensation of 126 km zero-DSF Using Parametric Processes,” in 34th European Conference and Exhibition on Optical Communication (ECOC2008), Technical Digest (CD), paper Tu.4.B.3.

K. Tanizawa, T. Kurosu, and S. Namiki, “1.8-ps RZ-Pulse 43-Gbps Transmissions over 126-km DSF with Parametric Tunable Dispersion Compensation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThJ4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OThJ4

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Configuration and principle of P-TDC employing frequency shifter with SI.

Fig. 2
Fig. 2

Effects of third-order dispersion in high-speed transmission; (a) Relationship between bit-rate and transmission fiber length, (b) The transform-limited 1.8-ps pulse shapes before and after third-order dispersion experience of 16.21 ps3.

Fig. 3
Fig. 3

Dispersion-managed 126-km DSF span with proposed P-TDC.

Fig. 4
Fig. 4

Estimated in-band dispersion profiles for various converted wavelengths when the signal experiences 126-km DSF transmission with P-TDC.

Fig. 5
Fig. 5

Experimental setup for the evaluation of the compensation performances. MLFL: Mode-locked fiber laser, VOA: Variable optical attenuator, BPF-a: Wavelength-tunable bandpass filter (thin film, 4.3-nm bandwidth, number of cavities is 5), BPF-b: Wavelength-tunable bandpass filter (thin film, 4.2-nm bandwidth, number of cavities is 5), BPF-c: Wavelength-tunable bandpass filter (thin film, 5-nm bandwidth, number of cavities is 4), PC: Polarization controller, EDFA: Erbium doped fiber amplifier, TLS: Tunable light source, OSO: Optical sampling oscilloscope.

Fig. 6
Fig. 6

Pulse widths versus converted wavelengths.

Fig. 7
Fig. 7

Experimental setup for 1.8 ps pulse 43 Gbit/s RZ-OOK transmissions over 126-km DSF. LN mod.: Lithium niobate modulator, PPG: Pulse pattern generator, BPF-a: Wavelength-tunable bandpass filter (thin film, 4.3-nm bandwidth, number of cavities is 5), BPF-b: Wavelength-tunable bandpass filter (thin film, 4.2-nm bandwidth, number of cavities is 5), BPF-c: Wavelength-tunable bandpass filter (thin film, 5-nm bandwidth, number of cavities is 4), BPF-d: Wavelength- and bandwidth-tunable bandpass filter (grating with slit, bandwidth was set at less than 1 nm), PC: Polarization controller, EDFA: Erbium doped fiber amplifier, TLS: Tunable light source, VOA: Variable optical attenuator, CR: Clock recovery, PD: Photo detector, BERT: Bit error ratio tester.

Fig. 8
Fig. 8

BER characteristics for pump wavelengths from (a) 1553.2 to 1555.2 nm and (b) 1553.2 to 1551.2 nm.

Fig. 9
Fig. 9

Power penalty at a BER of 10−9.

Fig. 10
Fig. 10

Experimental setup for 172 Gbit/s RZ-OOK transmission over 126-km DSF. LN mod.: Lithium niobate modulator, PPG: Pulse pattern generator, BPF-a: Wavelength-tunable bandpass filter (thin film, 4.3-nm bandwidth, number of cavities is 5), BPF-b: Wavelength-tunable bandpass filter (thin film, 4.2-nm bandwidth, number of cavities is 5), BPF-c: Wavelength-tunable bandpass filter (thin film, 5-nm bandwidth, number of cavities is 4), BPF-d: Wavelength- and bandwidth-tunable bandpass filter (grating with slit, bandwidth was set at less than 1 nm), PC: Polarization controller, EDFA: Erbium doped fiber amplifier, TLS: Tunable light source, CR: Clock recovery, MLLD: Mode locked laser diode, VOA: Variable optical attenuator, PD: Photo detector, BERT: Bit error ratio tester.

Fig. 11
Fig. 11

Input and received eye-diagrams measured by optical sampling oscilloscope.

Fig. 12
Fig. 12

BER characteristic of 172 Gbit/s RZ-OOK transmission over 126 km DSF.

Tables (1)

Tables Icon

Table 1 Measured fiber profiles of the transmission DSF and two DCF spans for P-TDC.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Deff.=β2(b)(ω1)Lbβ2(a)(ω0)La
Seff.=β3(a)(ω0)La+β3(b)(ω1)Lb
ΔTFWHM=ΔT01+{μΔT02(λCλmin)}2

Metrics