Abstract

Wideband dispersion-free slow light in chirped-slot photonic-crystal coupled waveguides is proposed and theoretically investigated in detail. By systematically analyzing the dependence of band shape on various structure parameters, unique inflection points in the key photonic band with approximate zero group velocity can be obtained in an optimized slot photonic-crystal coupled waveguide. By simply chirping the widths of the photonic-crystal waveguides in the optimized structure, wideband (up to 20 nm) slow-light with optical confinement in the low dielectric slot is demonstrated numerically with relative temporal pulse-width spreading well below 8% as obtained from two-dimensional finite-difference time-domain simulations. The wideband slow-light operation of the proposed structures would offer significant potential for novel compact high-speed optical-signal-processing devices in silicon-based systems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
    [CrossRef]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  3. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic crystals slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
    [CrossRef]
  4. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40(9), 2666–2670 (2007).
    [CrossRef]
  5. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [CrossRef]
  6. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  7. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  8. A. Di Falco, L. O'Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92(8), 083501 (2008).
    [CrossRef]
  9. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics 3(4), 216–219 (2009).
    [CrossRef]
  10. S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
    [CrossRef]
  11. F. Riboli, P. Bettotti, and L. Pavesi, “Band gap characterization and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides,” Opt. Express 15(19), 11769–11775 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-19-11769 .
    [CrossRef] [PubMed]
  12. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  13. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
    [CrossRef] [PubMed]
  14. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-10-5976 .
    [CrossRef] [PubMed]
  15. M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett. 88(25), 251114 (2006).
    [CrossRef]
  16. T. Liu and R. Panepucci, “Confined waveguide modes in slot photonic crystal slab,” Opt. Express 15(7), 4304–4309 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-7-4304 .
    [CrossRef] [PubMed]
  17. A. Di Falco, L. O'Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostructures 6(1), 38–41 (2008).
    [CrossRef]
  18. J. Wu, C. Peng, Y. P. Li, and Z. Y. Wang, “Light localization in slot photonic crystal waveguide,” Chin. Phys. Lett. 26(1), 014209 (2009).
    [CrossRef]
  19. J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16(6), 4177–4191 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=OE-16-6-4177 .
    [CrossRef] [PubMed]
  20. X. N. Chen, Y. S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, “Capacitor-embedded 0.54 pJ/bit silicon-slot photonic crystal waveguide modulator,” Opt. Lett. 34(5), 602–604 (2009).
    [CrossRef] [PubMed]
  21. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9444 .
    [CrossRef] [PubMed]
  22. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-9-6227 .
    [CrossRef] [PubMed]
  23. J. Hou, D. S. Gao, H. M. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21(20), 1571–1573 (2009).
    [CrossRef]
  24. O. Khayam and H. Benisty, “General recipe for flatbands in photonic crystal waveguides,” Opt. Express 17(17), 14634–14648 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-17-14634 .
    [CrossRef] [PubMed]
  25. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13(23), 9398–9408 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-23-9398 .
    [CrossRef] [PubMed]
  26. N. Yamamoto, T. Ogawa, and K. Komori, “Photonic crystal directional coupler switch with small switching length and wide bandwidth,” Opt. Express 14(3), 1223–1229 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-3-1223 .
    [CrossRef] [PubMed]
  27. S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, “Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides,” Opt. Express 15(6), 3543–3549 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3543 .
    [CrossRef] [PubMed]
  28. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=OE-16-12-9245 .
    [CrossRef] [PubMed]
  29. J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
    [CrossRef]
  30. F. H. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26(11), 1381–1386 (2008).
    [CrossRef]
  31. J. Sugisaka, N. Yamamoto, S. H. Jeong, K. Komori, M. Itoh, and T. Yatagai, “Photonic Band Engineering of Coupled Waveguide Using Geometrical Modulation,” Jpn. J. Appl. Phys. 47(12), 8829–8833 (2008).
    [CrossRef]
  32. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-8-3-173 .
    [CrossRef] [PubMed]
  33. D. S. Gao and Z. Zhou, “Nonlinear equation method for band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 88(16), 163105 (2006).
    [CrossRef]
  34. F.-F. Ren, M. B. Yu, J. D. Ye, Q. Chen, S. T. Tan, G. Q. Lo, and D. L. Kwong, “Strong vertical light output from thin silicon rich oxide/SiO2 multilayers via in-plane modulation of photonic crystal pattern,” Appl. Phys. Lett. 93(9), 091901 (2008).
    [CrossRef]
  35. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
    [CrossRef] [PubMed]
  36. K. Yamada, H. Morita, A. Shinya, and M. Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198(4-6), 395–402 (2001).
    [CrossRef]
  37. R. S. Jacobsen, A. V. Lavrinenko, L. H. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J. Fage-Pedersen, and P. I. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express 13(20), 7861–7871 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-20-7861 .
    [CrossRef] [PubMed]
  38. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-21-17076 .
    [CrossRef] [PubMed]

2010

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

2009

J. Wu, C. Peng, Y. P. Li, and Z. Y. Wang, “Light localization in slot photonic crystal waveguide,” Chin. Phys. Lett. 26(1), 014209 (2009).
[CrossRef]

J. Hou, D. S. Gao, H. M. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21(20), 1571–1573 (2009).
[CrossRef]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

X. N. Chen, Y. S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, “Capacitor-embedded 0.54 pJ/bit silicon-slot photonic crystal waveguide modulator,” Opt. Lett. 34(5), 602–604 (2009).
[CrossRef] [PubMed]

O. Khayam and H. Benisty, “General recipe for flatbands in photonic crystal waveguides,” Opt. Express 17(17), 14634–14648 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-17-14634 .
[CrossRef] [PubMed]

2008

J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16(6), 4177–4191 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=OE-16-6-4177 .
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-9-6227 .
[CrossRef] [PubMed]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=OE-16-12-9245 .
[CrossRef] [PubMed]

F. H. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26(11), 1381–1386 (2008).
[CrossRef]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-21-17076 .
[CrossRef] [PubMed]

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92(8), 083501 (2008).
[CrossRef]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostructures 6(1), 38–41 (2008).
[CrossRef]

J. Sugisaka, N. Yamamoto, S. H. Jeong, K. Komori, M. Itoh, and T. Yatagai, “Photonic Band Engineering of Coupled Waveguide Using Geometrical Modulation,” Jpn. J. Appl. Phys. 47(12), 8829–8833 (2008).
[CrossRef]

F.-F. Ren, M. B. Yu, J. D. Ye, Q. Chen, S. T. Tan, G. Q. Lo, and D. L. Kwong, “Strong vertical light output from thin silicon rich oxide/SiO2 multilayers via in-plane modulation of photonic crystal pattern,” Appl. Phys. Lett. 93(9), 091901 (2008).
[CrossRef]

2007

2006

2005

2004

2002

2001

K. Yamada, H. Morita, A. Shinya, and M. Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198(4-6), 395–402 (2001).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-8-3-173 .
[CrossRef] [PubMed]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Adachi, J.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=OE-16-12-9245 .
[CrossRef] [PubMed]

Almeida, V. R.

Andreani, L. C.

Baba, T.

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Barrios, C. A.

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Belotti, M.

M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett. 88(25), 251114 (2006).
[CrossRef]

Benisty, H.

Bermel, P.

Bettotti, P.

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Borel, P. I.

Brosi, J. M.

Burr, G. W.

Cazzanelli, M.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Chen, Q.

F.-F. Ren, M. B. Yu, J. D. Ye, Q. Chen, S. T. Tan, G. Q. Lo, and D. L. Kwong, “Strong vertical light output from thin silicon rich oxide/SiO2 multilayers via in-plane modulation of photonic crystal pattern,” Appl. Phys. Lett. 93(9), 091901 (2008).
[CrossRef]

Chen, R. T.

Chen, X. N.

Chen, Y.

M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett. 88(25), 251114 (2006).
[CrossRef]

Chen, Y. S.

Daldosso, N.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Di Falco, A.

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92(8), 083501 (2008).
[CrossRef]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostructures 6(1), 38–41 (2008).
[CrossRef]

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Fage-Pedersen, J.

Fan, S.

Farjadpour, A.

Fedeli, J. M.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Frandsen, L. H.

Freude, W.

Galli, M.

M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett. 88(25), 251114 (2006).
[CrossRef]

Gao, D. S.

J. Hou, D. S. Gao, H. M. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21(20), 1571–1573 (2009).
[CrossRef]

D. S. Gao and Z. Zhou, “Nonlinear equation method for band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 88(16), 163105 (2006).
[CrossRef]

Garrido, B.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Gerace, D.

M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett. 88(25), 251114 (2006).
[CrossRef]

Gomez-Iglesias, A.

Hao, R.

J. Hou, D. S. Gao, H. M. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21(20), 1571–1573 (2009).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hernandez, S.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Hou, J.

J. Hou, D. S. Gao, H. M. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21(20), 1571–1573 (2009).
[CrossRef]

Huang, S. C.

Ibanescu, M.

Ippen, E.

Irrera, A.

M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett. 88(25), 251114 (2006).
[CrossRef]

Ishikura, N.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

Itoh, M.

J. Sugisaka, N. Yamamoto, S. H. Jeong, K. Komori, M. Itoh, and T. Yatagai, “Photonic Band Engineering of Coupled Waveguide Using Geometrical Modulation,” Jpn. J. Appl. Phys. 47(12), 8829–8833 (2008).
[CrossRef]

Jacobsen, R. S.

Jacome, L.

Jeong, S. H.

J. Sugisaka, N. Yamamoto, S. H. Jeong, K. Komori, M. Itoh, and T. Yatagai, “Photonic Band Engineering of Coupled Waveguide Using Geometrical Modulation,” Jpn. J. Appl. Phys. 47(12), 8829–8833 (2008).
[CrossRef]

Jiang, C.

Jiang, W.

Joannopoulos, J. D.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

Jordana, E.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Kato, M.

Kawaaski, T.

Khayam, O.

Komori, K.

J. Sugisaka, N. Yamamoto, S. H. Jeong, K. Komori, M. Itoh, and T. Yatagai, “Photonic Band Engineering of Coupled Waveguide Using Geometrical Modulation,” Jpn. J. Appl. Phys. 47(12), 8829–8833 (2008).
[CrossRef]

N. Yamamoto, T. Ogawa, and K. Komori, “Photonic crystal directional coupler switch with small switching length and wide bandwidth,” Opt. Express 14(3), 1223–1229 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-3-1223 .
[CrossRef] [PubMed]

Koos, C.

Krauss, T. F.

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-9-6227 .
[CrossRef] [PubMed]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92(8), 083501 (2008).
[CrossRef]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostructures 6(1), 38–41 (2008).
[CrossRef]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-21-17076 .
[CrossRef] [PubMed]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40(9), 2666–2670 (2007).
[CrossRef]

Kuramochi, E.

Kwong, D. L.

F.-F. Ren, M. B. Yu, J. D. Ye, Q. Chen, S. T. Tan, G. Q. Lo, and D. L. Kwong, “Strong vertical light output from thin silicon rich oxide/SiO2 multilayers via in-plane modulation of photonic crystal pattern,” Appl. Phys. Lett. 93(9), 091901 (2008).
[CrossRef]

Lavrinenko, A. V.

Lebour, Y.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Lee, C. P.

Leuthold, J.

Li, J.

Li, Y. P.

J. Wu, C. Peng, Y. P. Li, and Z. Y. Wang, “Light localization in slot photonic crystal waveguide,” Chin. Phys. Lett. 26(1), 014209 (2009).
[CrossRef]

Lipson, M.

Liscidini, M.

M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett. 88(25), 251114 (2006).
[CrossRef]

Liu, T.

Lo, G. Q.

F.-F. Ren, M. B. Yu, J. D. Ye, Q. Chen, S. T. Tan, G. Q. Lo, and D. L. Kwong, “Strong vertical light output from thin silicon rich oxide/SiO2 multilayers via in-plane modulation of photonic crystal pattern,” Appl. Phys. Lett. 93(9), 091901 (2008).
[CrossRef]

Ma, J.

Martinez, A.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Miritello, M.

M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett. 88(25), 251114 (2006).
[CrossRef]

Mori, D.

Morita, H.

K. Yamada, H. Morita, A. Shinya, and M. Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198(4-6), 395–402 (2001).
[CrossRef]

Moulin, G.

Notomi, M.

O’Faolain, L.

O'Faolain, L.

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostructures 6(1), 38–41 (2008).
[CrossRef]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92(8), 083501 (2008).
[CrossRef]

Ogawa, T.

Panepucci, R.

Panepucci, R. R.

Patrini, M.

M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett. 88(25), 251114 (2006).
[CrossRef]

Pavesi, L.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

F. Riboli, P. Bettotti, and L. Pavesi, “Band gap characterization and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides,” Opt. Express 15(19), 11769–11775 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-19-11769 .
[CrossRef] [PubMed]

Pellegrino, P.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Peng, C.

J. Wu, C. Peng, Y. P. Li, and Z. Y. Wang, “Light localization in slot photonic crystal waveguide,” Chin. Phys. Lett. 26(1), 014209 (2009).
[CrossRef]

Peucheret, C.

Politi, A.

M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett. 88(25), 251114 (2006).
[CrossRef]

Poulton, C.

Priolo, F.

M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett. 88(25), 251114 (2006).
[CrossRef]

Ren, F.-F.

F.-F. Ren, M. B. Yu, J. D. Ye, Q. Chen, S. T. Tan, G. Q. Lo, and D. L. Kwong, “Strong vertical light output from thin silicon rich oxide/SiO2 multilayers via in-plane modulation of photonic crystal pattern,” Appl. Phys. Lett. 93(9), 091901 (2008).
[CrossRef]

Riboli, F.

Rodriguez, A.

Roundy, D.

Sasaki, H.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=OE-16-12-9245 .
[CrossRef] [PubMed]

Shinya, A.

K. Yamada, H. Morita, A. Shinya, and M. Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198(4-6), 395–402 (2001).
[CrossRef]

Soljacic, M.

Spano, R.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Sugisaka, J.

J. Sugisaka, N. Yamamoto, S. H. Jeong, K. Komori, M. Itoh, and T. Yatagai, “Photonic Band Engineering of Coupled Waveguide Using Geometrical Modulation,” Jpn. J. Appl. Phys. 47(12), 8829–8833 (2008).
[CrossRef]

Tan, S. T.

F.-F. Ren, M. B. Yu, J. D. Ye, Q. Chen, S. T. Tan, G. Q. Lo, and D. L. Kwong, “Strong vertical light output from thin silicon rich oxide/SiO2 multilayers via in-plane modulation of photonic crystal pattern,” Appl. Phys. Lett. 93(9), 091901 (2008).
[CrossRef]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Waldow, M.

Wang, F. H.

Wang, Z. Y.

J. Wu, C. Peng, Y. P. Li, and Z. Y. Wang, “Light localization in slot photonic crystal waveguide,” Chin. Phys. Lett. 26(1), 014209 (2009).
[CrossRef]

White, T. P.

Wu, H. M.

J. Hou, D. S. Gao, H. M. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21(20), 1571–1573 (2009).
[CrossRef]

Wu, J.

J. Wu, C. Peng, Y. P. Li, and Z. Y. Wang, “Light localization in slot photonic crystal waveguide,” Chin. Phys. Lett. 26(1), 014209 (2009).
[CrossRef]

Xu, Q.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yamada, K.

K. Yamada, H. Morita, A. Shinya, and M. Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198(4-6), 395–402 (2001).
[CrossRef]

Yamamoto, N.

J. Sugisaka, N. Yamamoto, S. H. Jeong, K. Komori, M. Itoh, and T. Yatagai, “Photonic Band Engineering of Coupled Waveguide Using Geometrical Modulation,” Jpn. J. Appl. Phys. 47(12), 8829–8833 (2008).
[CrossRef]

N. Yamamoto, T. Ogawa, and K. Komori, “Photonic crystal directional coupler switch with small switching length and wide bandwidth,” Opt. Express 14(3), 1223–1229 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-3-1223 .
[CrossRef] [PubMed]

Yatagai, T.

J. Sugisaka, N. Yamamoto, S. H. Jeong, K. Komori, M. Itoh, and T. Yatagai, “Photonic Band Engineering of Coupled Waveguide Using Geometrical Modulation,” Jpn. J. Appl. Phys. 47(12), 8829–8833 (2008).
[CrossRef]

Ye, J. D.

F.-F. Ren, M. B. Yu, J. D. Ye, Q. Chen, S. T. Tan, G. Q. Lo, and D. L. Kwong, “Strong vertical light output from thin silicon rich oxide/SiO2 multilayers via in-plane modulation of photonic crystal pattern,” Appl. Phys. Lett. 93(9), 091901 (2008).
[CrossRef]

Yu, M. B.

F.-F. Ren, M. B. Yu, J. D. Ye, Q. Chen, S. T. Tan, G. Q. Lo, and D. L. Kwong, “Strong vertical light output from thin silicon rich oxide/SiO2 multilayers via in-plane modulation of photonic crystal pattern,” Appl. Phys. Lett. 93(9), 091901 (2008).
[CrossRef]

Zhao, Y.

Zhou, Z.

J. Hou, D. S. Gao, H. M. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21(20), 1571–1573 (2009).
[CrossRef]

D. S. Gao and Z. Zhou, “Nonlinear equation method for band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 88(16), 163105 (2006).
[CrossRef]

Zsigri, B.

Appl. Phys. Lett.

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92(8), 083501 (2008).
[CrossRef]

M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett. 88(25), 251114 (2006).
[CrossRef]

D. S. Gao and Z. Zhou, “Nonlinear equation method for band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 88(16), 163105 (2006).
[CrossRef]

F.-F. Ren, M. B. Yu, J. D. Ye, Q. Chen, S. T. Tan, G. Q. Lo, and D. L. Kwong, “Strong vertical light output from thin silicon rich oxide/SiO2 multilayers via in-plane modulation of photonic crystal pattern,” Appl. Phys. Lett. 93(9), 091901 (2008).
[CrossRef]

Chin. Phys. Lett.

J. Wu, C. Peng, Y. P. Li, and Z. Y. Wang, “Light localization in slot photonic crystal waveguide,” Chin. Phys. Lett. 26(1), 014209 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Hou, D. S. Gao, H. M. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21(20), 1571–1573 (2009).
[CrossRef]

J. Appl. Phys.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Phys. D

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40(9), 2666–2670 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

J. Sugisaka, N. Yamamoto, S. H. Jeong, K. Komori, M. Itoh, and T. Yatagai, “Photonic Band Engineering of Coupled Waveguide Using Geometrical Modulation,” Jpn. J. Appl. Phys. 47(12), 8829–8833 (2008).
[CrossRef]

Nat. Photonics

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Opt. Commun.

K. Yamada, H. Morita, A. Shinya, and M. Notomi, “Improved line-defect structures for photonic-crystal waveguides with high group velocity,” Opt. Commun. 198(4-6), 395–402 (2001).
[CrossRef]

Opt. Express

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-8-3-173 .
[CrossRef] [PubMed]

R. S. Jacobsen, A. V. Lavrinenko, L. H. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J. Fage-Pedersen, and P. I. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express 13(20), 7861–7871 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-20-7861 .
[CrossRef] [PubMed]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13(23), 9398–9408 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-23-9398 .
[CrossRef] [PubMed]

N. Yamamoto, T. Ogawa, and K. Komori, “Photonic crystal directional coupler switch with small switching length and wide bandwidth,” Opt. Express 14(3), 1223–1229 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-3-1223 .
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9444 .
[CrossRef] [PubMed]

S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, “Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides,” Opt. Express 15(6), 3543–3549 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3543 .
[CrossRef] [PubMed]

T. Liu and R. Panepucci, “Confined waveguide modes in slot photonic crystal slab,” Opt. Express 15(7), 4304–4309 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-7-4304 .
[CrossRef] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-10-5976 .
[CrossRef] [PubMed]

F. Riboli, P. Bettotti, and L. Pavesi, “Band gap characterization and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides,” Opt. Express 15(19), 11769–11775 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-19-11769 .
[CrossRef] [PubMed]

J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16(6), 4177–4191 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=OE-16-6-4177 .
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-9-6227 .
[CrossRef] [PubMed]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=OE-16-12-9245 .
[CrossRef] [PubMed]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-21-17076 .
[CrossRef] [PubMed]

O. Khayam and H. Benisty, “General recipe for flatbands in photonic crystal waveguides,” Opt. Express 17(17), 14634–14648 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-17-14634 .
[CrossRef] [PubMed]

Opt. Lett.

Photon. Nanostructures

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostructures 6(1), 38–41 (2008).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic diagram of the SPCWG; black denotes silicon, white denotes air, and gray denotes silicon nanocrystal in silica. The major and minor axes (Rlong and Rshort) of the elliptical air holes, the radii (Routside) of two lines of holes in vicinity of the slots, the width (Wslot) of the slot, and the distance (dy) between the center of the elliptical holes and the center of the holes nearby the slots are set to be optimized. (b) Band structure of the optimized SPCWG calculated by FDTD [30]; only the even mode in the electric-field component Ey (quasi-even in z direction and odd in y direction) is considered. The band in the center of the figure is of chair shape with an inflection point with approximate zero group velocity. The single bands composed of differently colored dots are a conventional result of the band structure calculated using Meep [35]. The parameters are R = 0.3a, Rshort = 0.45a, Rlong = 0.76a, Wslot = 0.4a, Routside = 0.2a, dy = 0.85 × 1.732a. The triangle-shaped dots with gray denote modes of the structure. The rectangular shadow zone indicates that the normalized frequency range can be used to chirp.

Fig. 2
Fig. 2

Main TE photonic band as a function of various parameters. (a) Dependence of the main band on Rshort in the SPCWG, the parameters are with R = 0.3a, Rlong = a, Routside = 0.2a, Wslot = 0.2a, dy = 1.732a. While Rshort is increased from 0.2a to 0.7a with a step 0.05a, the waveguide band is shifted up accordingly. The ideal chair shape is formed at approximately Rshort = 0.45a. (b) Dependence of the main band on Rlong in SPCWG, the parameters are with R = 0.3a, Rshort = 0.45a, Routside = 0.2a, Wslot = 0.2a, dy = 1.732a. While Rlong is increased from 0.5a to 1.2a with a step 0.05a, the waveguide band is shifted up accordingly. The ideal chair shape is formed at around Rlong = a. (c) Dependence of the main band on Routside in the SPCWG, the parameters are with R = 0.3a, Rshort = 0.45a, Rlong = 1a, Wslot = 0.2a, dy = 1.732a. While Routside is increased from 0.1a to 0.45a with a step 0.05a, the waveguide band is shifted up accordingly. The ideal chair shape is formed at approximately Routside = 0.2a.

Fig. 3
Fig. 3

(a) Dependence of the main mode on dy in the SPCWG, the parameters are with R = 0.3a, Rshort = 0.45a, Rlong = a, Routside = 0.2a, Wslot = 0.2a and dy is varied. While dy is increased from 0.85 × 1.732a to 1.15 × 1.732a with a step 0.025 × 1.732a, the main band is shifted down accordingly and the ideal chair shape is almost maintained. (b) Dependence of the main mode on Wslot in SPCWG, the parameters are with R = 0.3a, Rshort = 0.45 a, Rlong = a, Routside = 0.2a, dy = 1.732a. While Wslot is increased from 0a to 0.5a with a step 0.05a, the main band is shifted up accordingly and the ideal chair shape is little changed.

Fig. 4
Fig. 4

Preliminary optimized band structure of the SPCWG. The parameters are R = 0.3a, Rlong = a, Rshort = 0.45a, Routside = 0.2a, Wslot = 0.2a, and dy = 1.732a. The normalized bandwidth is 0.8293%. The rectangular shadow zone indicates the single-mode normalized frequency range which can be used to chirp.

Fig. 5
Fig. 5

(a) ⊿ω/ω dependence on the structure parameter dy. As dy is increased, the normalized bandwidth decreases. (b) ⊿ω/ω dependence on Wslot. As Wslot is increased, the normalized bandwidth first decreases and then increases. The normalized bandwidth that can be obtained by varying Wslot is larger than that by varying dy.

Fig. 6
Fig. 6

(a) Schematic diagram of the SPCWG including chirping of dy; black denotes silicon, white denotes air and gray denotes silicon nanocrystal in silica. (b) Dependence of the flat-band slow-light normalized frequency on dy.

Fig. 7
Fig. 7

Structure of the chirped SPCWG. Black denotes silicon, white denotes air, and gray denotes silicon nanocrystals in silica. The four red lines denote the four monitors numbered one to four, respectively. Surrounding the structure is a perfectly matched layer.

Fig. 8
Fig. 8

Temporal pulse shapes detected by the monitors in the chirped SPCWG. The pulses are normalized to the maximum of the peak detected by monitor one (a) Temporal pulse shapes detected by monitor one and monitor four positioned at the input and the output of the whole structure respectively. (b) Pulse shapes detected by monitor two and monitor three positioned at the input and the output of the chirped SPCCW.

Fig. 9
Fig. 9

Temporal pulse shapes detected by the monitors in the unchirped structure, the fluxes are normalized to the maximum of the peak detected by monitor one. (a) Pulse shapes at the input and the output of the entire structure. (b) Pulse shapes at the input and the output of the SPCWG.

Fig. 10
Fig. 10

(a) Ey time step 2500a/c(about 3.875ps) with temporal Gaussian-pulse input. (b) Ey2 profile of the beam at the position of 80.5a.

Fig. 11
Fig. 11

Ey modal field for the PCW without (upper three) and with (bottom three) the slots for three different wave vectors in the negative-dispersion zone, flat-band zone, and positive-dispersion zone respectively. The structure parameters with slots are just the same as those in Fig. 1(b); and the parameters in the upper conventional PCW are also the same, but without the slots. Both the structures have a similar chair-shaped band, and their bandwidths for slow light are indicated in Fig. 5(b).

Tables (1)

Tables Icon

Table 1 Pulse propagation with various chirp ranges of dy.

Metrics