Abstract

An experimental test-bed using a narrow-pulsed ultraviolet (UV) laser and high-bandwidth photomultiplier tube was set up to characterize pulse broadening effects in short-range non-line-of-sight (NLOS) scattering communication channels. Pulse broadening is reported as a function of the transmitter elevation angle, transmitter beam angle, receiver elevation angle, receiver field-of-view, and transmitter-receiver distance. The results provide insight into the channel bandwidth and achievable communication data rate.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Harvey, “A survey of ultraviolet communication systems,” Naval Research Laboratory Technical Report, Washington D.C., March 13, 1964.
  2. D. M. Junge, “Non-line-of-sight electro-optic laser communications in the middle ultraviolet,” M.S. Thesis, Naval Postgraduate School, Monterey, CA, December 1977.
  3. D. E. Sunstein, “A scatter communications link at ultraviolet frequencies,” B.S. Thesis, MIT, Cambridge, MA, 1968.
  4. D. M. Reilly, “Atmospheric optical communications in the middle ultraviolet,” M.S. Thesis, MIT, Cambridge, MA, 1976.
  5. D. M. Reilly and C. Warde, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. A 69(3), 464–470 (1979).
    [CrossRef]
  6. M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8(12), 1964–1972 (1991).
    [CrossRef]
  7. E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” final report of Aeronautical Research Associates of Princeton, Inc., NJ, February 1976.
  8. W. S. Ross and R. S. Kennedy, “An investigation of atmospheric optically scattered non-line-of-sight communication links,” Army Research Office Project Report, Research Triangle Park, NC, January 1980.
  9. J. J. Puschell and R. Bayse, “High data rate ultraviolet communication systems for the tactical battlefield,” Proc. of Tactical Communications Conf., 253–267 (1990).
  10. B. Charles, B. Hughes, A. Erickson, J. Wilkins, and E. Teppo, “An ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
    [CrossRef]
  11. R. D. Shute, “Electrodeless ultraviolet communications system,” IEEE Aerosp. Electron. Syst. Mag. 10(11), 2–7 (1995).
    [CrossRef]
  12. Sensor Electronic Technology Inc, http://www.s-et.com/ .
  13. M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. A. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8(2), 302–309 (2002).
    [CrossRef]
  14. V. Adivarahan, Q. Fareed, S. Srivastava, T. Katona, M. Gaevski, and A. Khan, “Robust 285 nm Deep UV Light Emitting Diodes over Metal Organic Hydride Vapor Phase Epitaxially Grown AlN/Sapphire Templates,” Jpn. J. Appl. Phys. 46(23), 537–539 (2007).
    [CrossRef]
  15. X. Bai, D. Mcintosh, H. Liu, and J. C. Campbell, “Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 19(22), 1822–1824 (2007).
    [CrossRef]
  16. S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett. 19(21), 1744–1746 (2007).
    [CrossRef]
  17. D. Kedar and S. Arnon, “Non-line-of-sight optical wireless sensor network operating in multiscattering channel,” Appl. Opt. 45(33), 8454–8461 (2006).
    [CrossRef] [PubMed]
  18. S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. Am. A 26(3), 530–539 (2009).
    [CrossRef]
  19. D. Kedard and S. Arnon, “Subsea ultraviolet solar-blind broadband free-space optics communication,” Opt. Engin. 48, 046001 1–7 (2009).
  20. C. Lavigne, G. Durand, and A. Roblin, “Ultraviolet light propagation under low visibility atmospheric conditions and its application to aircraft landing aid,” Appl. Opt. 45(36), 9140–9150 (2006).
    [CrossRef] [PubMed]
  21. C. Lavigne, G. Durand, and A. Roblin, “Simulation comparison of aircraft landing performance in foggy conditions aided by different UV sensors,” Appl. Opt. 48(12), 2203–2213 (2009).
    [CrossRef] [PubMed]
  22. G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 62310C, 1–12 (2006).
  23. Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
    [CrossRef]
  24. G. Chen, F. Abou-Galala, Z. Xu, and B. M. Sadler, “Experimental evaluation of LED-based solar blind NLOS communication links,” Opt. Express 16(19), 15059–15068 (2008).
    [CrossRef] [PubMed]
  25. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
    [CrossRef] [PubMed]
  26. G. Chen, Z. Xu, H. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17(5), 3929–3940 (2009).
    [CrossRef] [PubMed]
  27. H. Ding, G. Chen, A. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
    [CrossRef]
  28. M. R. Pakravan, M. Kavehrad, and H. Hashemi, “Indoor wireless infrared channel characterization by measurements,” IEEE Trans. Vehicular Technol. 50(4), 1053–1073 (2001).
    [CrossRef]
  29. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
    [CrossRef]
  30. J. M. Kahn, W. J. Krause, and J. B. Carruthers, “Experimental characterization of non-directed indoor infrared channels,” IEEE Trans. Commun. 43(2), 1613–1623 (1995).
    [CrossRef]

2009

2008

2007

V. Adivarahan, Q. Fareed, S. Srivastava, T. Katona, M. Gaevski, and A. Khan, “Robust 285 nm Deep UV Light Emitting Diodes over Metal Organic Hydride Vapor Phase Epitaxially Grown AlN/Sapphire Templates,” Jpn. J. Appl. Phys. 46(23), 537–539 (2007).
[CrossRef]

X. Bai, D. Mcintosh, H. Liu, and J. C. Campbell, “Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 19(22), 1822–1824 (2007).
[CrossRef]

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett. 19(21), 1744–1746 (2007).
[CrossRef]

2006

2002

M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. A. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8(2), 302–309 (2002).
[CrossRef]

2001

M. R. Pakravan, M. Kavehrad, and H. Hashemi, “Indoor wireless infrared channel characterization by measurements,” IEEE Trans. Vehicular Technol. 50(4), 1053–1073 (2001).
[CrossRef]

1997

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

1995

J. M. Kahn, W. J. Krause, and J. B. Carruthers, “Experimental characterization of non-directed indoor infrared channels,” IEEE Trans. Commun. 43(2), 1613–1623 (1995).
[CrossRef]

R. D. Shute, “Electrodeless ultraviolet communications system,” IEEE Aerosp. Electron. Syst. Mag. 10(11), 2–7 (1995).
[CrossRef]

1994

B. Charles, B. Hughes, A. Erickson, J. Wilkins, and E. Teppo, “An ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

1991

1979

D. M. Reilly and C. Warde, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. A 69(3), 464–470 (1979).
[CrossRef]

Abou-Galala, F.

Adivarahan, V.

V. Adivarahan, Q. Fareed, S. Srivastava, T. Katona, M. Gaevski, and A. Khan, “Robust 285 nm Deep UV Light Emitting Diodes over Metal Organic Hydride Vapor Phase Epitaxially Grown AlN/Sapphire Templates,” Jpn. J. Appl. Phys. 46(23), 537–539 (2007).
[CrossRef]

M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. A. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8(2), 302–309 (2002).
[CrossRef]

Arnon, S.

Bai, X.

X. Bai, D. Mcintosh, H. Liu, and J. C. Campbell, “Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 19(22), 1822–1824 (2007).
[CrossRef]

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

Campbell, J. C.

X. Bai, D. Mcintosh, H. Liu, and J. C. Campbell, “Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 19(22), 1822–1824 (2007).
[CrossRef]

Carruthers, J. B.

J. M. Kahn, W. J. Krause, and J. B. Carruthers, “Experimental characterization of non-directed indoor infrared channels,” IEEE Trans. Commun. 43(2), 1613–1623 (1995).
[CrossRef]

Charles, B.

B. Charles, B. Hughes, A. Erickson, J. Wilkins, and E. Teppo, “An ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

Chen, G.

Chitnis, A. S.

M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. A. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8(2), 302–309 (2002).
[CrossRef]

Ding, H.

Dupuis, R. D.

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett. 19(21), 1744–1746 (2007).
[CrossRef]

Durand, G.

Erickson, A.

B. Charles, B. Hughes, A. Erickson, J. Wilkins, and E. Teppo, “An ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

Fareed, Q.

V. Adivarahan, Q. Fareed, S. Srivastava, T. Katona, M. Gaevski, and A. Khan, “Robust 285 nm Deep UV Light Emitting Diodes over Metal Organic Hydride Vapor Phase Epitaxially Grown AlN/Sapphire Templates,” Jpn. J. Appl. Phys. 46(23), 537–539 (2007).
[CrossRef]

Gaevski, M.

V. Adivarahan, Q. Fareed, S. Srivastava, T. Katona, M. Gaevski, and A. Khan, “Robust 285 nm Deep UV Light Emitting Diodes over Metal Organic Hydride Vapor Phase Epitaxially Grown AlN/Sapphire Templates,” Jpn. J. Appl. Phys. 46(23), 537–539 (2007).
[CrossRef]

Hashemi, H.

M. R. Pakravan, M. Kavehrad, and H. Hashemi, “Indoor wireless infrared channel characterization by measurements,” IEEE Trans. Vehicular Technol. 50(4), 1053–1073 (2001).
[CrossRef]

Hughes, B.

B. Charles, B. Hughes, A. Erickson, J. Wilkins, and E. Teppo, “An ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

J. M. Kahn, W. J. Krause, and J. B. Carruthers, “Experimental characterization of non-directed indoor infrared channels,” IEEE Trans. Commun. 43(2), 1613–1623 (1995).
[CrossRef]

Katona, T.

V. Adivarahan, Q. Fareed, S. Srivastava, T. Katona, M. Gaevski, and A. Khan, “Robust 285 nm Deep UV Light Emitting Diodes over Metal Organic Hydride Vapor Phase Epitaxially Grown AlN/Sapphire Templates,” Jpn. J. Appl. Phys. 46(23), 537–539 (2007).
[CrossRef]

Kavehrad, M.

M. R. Pakravan, M. Kavehrad, and H. Hashemi, “Indoor wireless infrared channel characterization by measurements,” IEEE Trans. Vehicular Technol. 50(4), 1053–1073 (2001).
[CrossRef]

Kedar, D.

Kedard, D.

D. Kedard and S. Arnon, “Subsea ultraviolet solar-blind broadband free-space optics communication,” Opt. Engin. 48, 046001 1–7 (2009).

Khan, A.

V. Adivarahan, Q. Fareed, S. Srivastava, T. Katona, M. Gaevski, and A. Khan, “Robust 285 nm Deep UV Light Emitting Diodes over Metal Organic Hydride Vapor Phase Epitaxially Grown AlN/Sapphire Templates,” Jpn. J. Appl. Phys. 46(23), 537–539 (2007).
[CrossRef]

Khan, M. A.

M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. A. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8(2), 302–309 (2002).
[CrossRef]

Krause, W. J.

J. M. Kahn, W. J. Krause, and J. B. Carruthers, “Experimental characterization of non-directed indoor infrared channels,” IEEE Trans. Commun. 43(2), 1613–1623 (1995).
[CrossRef]

Lavigne, C.

Limb, J. B.

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett. 19(21), 1744–1746 (2007).
[CrossRef]

Liu, H.

X. Bai, D. Mcintosh, H. Liu, and J. C. Campbell, “Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 19(22), 1822–1824 (2007).
[CrossRef]

Luettgen, M. R.

Majumdar, A.

H. Ding, G. Chen, A. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[CrossRef]

Mcintosh, D.

X. Bai, D. Mcintosh, H. Liu, and J. C. Campbell, “Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 19(22), 1822–1824 (2007).
[CrossRef]

Model, J.

G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 62310C, 1–12 (2006).

Pakravan, M. R.

M. R. Pakravan, M. Kavehrad, and H. Hashemi, “Indoor wireless infrared channel characterization by measurements,” IEEE Trans. Vehicular Technol. 50(4), 1053–1073 (2001).
[CrossRef]

Reilly, D. M.

M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8(12), 1964–1972 (1991).
[CrossRef]

D. M. Reilly and C. Warde, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. A 69(3), 464–470 (1979).
[CrossRef]

Roblin, A.

Ryou, J. H.

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett. 19(21), 1744–1746 (2007).
[CrossRef]

Sadler, B. M.

Shapiro, J. H.

Shatalov, M.

M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. A. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8(2), 302–309 (2002).
[CrossRef]

Shaw, G. A.

G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 62310C, 1–12 (2006).

Shen, S. C.

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett. 19(21), 1744–1746 (2007).
[CrossRef]

Shute, R. D.

R. D. Shute, “Electrodeless ultraviolet communications system,” IEEE Aerosp. Electron. Syst. Mag. 10(11), 2–7 (1995).
[CrossRef]

Siegel, A. M.

G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 62310C, 1–12 (2006).

Simin, G.

M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. A. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8(2), 302–309 (2002).
[CrossRef]

Srivastava, S.

V. Adivarahan, Q. Fareed, S. Srivastava, T. Katona, M. Gaevski, and A. Khan, “Robust 285 nm Deep UV Light Emitting Diodes over Metal Organic Hydride Vapor Phase Epitaxially Grown AlN/Sapphire Templates,” Jpn. J. Appl. Phys. 46(23), 537–539 (2007).
[CrossRef]

Teppo, E.

B. Charles, B. Hughes, A. Erickson, J. Wilkins, and E. Teppo, “An ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

Warde, C.

D. M. Reilly and C. Warde, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. A 69(3), 464–470 (1979).
[CrossRef]

Wilkins, J.

B. Charles, B. Hughes, A. Erickson, J. Wilkins, and E. Teppo, “An ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

Xu, Z.

Yang, J.

M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. A. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8(2), 302–309 (2002).
[CrossRef]

Yoder, P. D.

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett. 19(21), 1744–1746 (2007).
[CrossRef]

Yoo, D.

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett. 19(21), 1744–1746 (2007).
[CrossRef]

Zhang, J.

M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. A. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8(2), 302–309 (2002).
[CrossRef]

Zhang, Y.

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett. 19(21), 1744–1746 (2007).
[CrossRef]

Appl. Opt.

IEEE Aerosp. Electron. Syst. Mag.

R. D. Shute, “Electrodeless ultraviolet communications system,” IEEE Aerosp. Electron. Syst. Mag. 10(11), 2–7 (1995).
[CrossRef]

IEEE Commun. Mag.

Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[CrossRef]

IEEE J. Sel. Areas Comm.

H. Ding, G. Chen, A. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. A. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8(2), 302–309 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

X. Bai, D. Mcintosh, H. Liu, and J. C. Campbell, “Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 19(22), 1822–1824 (2007).
[CrossRef]

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett. 19(21), 1744–1746 (2007).
[CrossRef]

IEEE Trans. Commun.

J. M. Kahn, W. J. Krause, and J. B. Carruthers, “Experimental characterization of non-directed indoor infrared channels,” IEEE Trans. Commun. 43(2), 1613–1623 (1995).
[CrossRef]

IEEE Trans. Vehicular Technol.

M. R. Pakravan, M. Kavehrad, and H. Hashemi, “Indoor wireless infrared channel characterization by measurements,” IEEE Trans. Vehicular Technol. 50(4), 1053–1073 (2001).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

V. Adivarahan, Q. Fareed, S. Srivastava, T. Katona, M. Gaevski, and A. Khan, “Robust 285 nm Deep UV Light Emitting Diodes over Metal Organic Hydride Vapor Phase Epitaxially Grown AlN/Sapphire Templates,” Jpn. J. Appl. Phys. 46(23), 537–539 (2007).
[CrossRef]

Opt. Engin.

D. Kedard and S. Arnon, “Subsea ultraviolet solar-blind broadband free-space optics communication,” Opt. Engin. 48, 046001 1–7 (2009).

Opt. Express

Opt. Lett.

Proc. IEEE

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

Proc. SPIE

B. Charles, B. Hughes, A. Erickson, J. Wilkins, and E. Teppo, “An ultraviolet laser based communication system for short range tactical applications,” Proc. SPIE 2115, 79–86 (1994).
[CrossRef]

G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 62310C, 1–12 (2006).

Other

Sensor Electronic Technology Inc, http://www.s-et.com/ .

E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” final report of Aeronautical Research Associates of Princeton, Inc., NJ, February 1976.

W. S. Ross and R. S. Kennedy, “An investigation of atmospheric optically scattered non-line-of-sight communication links,” Army Research Office Project Report, Research Triangle Park, NC, January 1980.

J. J. Puschell and R. Bayse, “High data rate ultraviolet communication systems for the tactical battlefield,” Proc. of Tactical Communications Conf., 253–267 (1990).

G. L. Harvey, “A survey of ultraviolet communication systems,” Naval Research Laboratory Technical Report, Washington D.C., March 13, 1964.

D. M. Junge, “Non-line-of-sight electro-optic laser communications in the middle ultraviolet,” M.S. Thesis, Naval Postgraduate School, Monterey, CA, December 1977.

D. E. Sunstein, “A scatter communications link at ultraviolet frequencies,” B.S. Thesis, MIT, Cambridge, MA, 1968.

D. M. Reilly, “Atmospheric optical communications in the middle ultraviolet,” M.S. Thesis, MIT, Cambridge, MA, 1976.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Solar blind NLOS UV channel impulse response measurement test-bed.

Fig. 2
Fig. 2

(a) Laser pulse signal after APD.

Fig. 2
Fig. 2

(b) Laser pulse signal after PMT.

Fig. 3
Fig. 3

Waveform changes with average times.

Fig. 4
Fig. 4

Pulse shape with different Tx Rx elevation angle.

Fig. 5
Fig. 5

Pulse width versus Tx elevation angle.

Fig. 6
Fig. 6

Pulse width versus Rx elevation angle.

Fig. 7
Fig. 7

Pulse width versus Rx FOV.

Fig. 8
Fig. 8

Pulse width versus baseline distance.

Tables (2)

Tables Icon

Table 1. Comparison of four different pulse widths

Tables Icon

Table 2 Pulse width with 3 Tx beam angles

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ=((tμ)2h2(t)dth2(t)dt)12,whereμ=h2(t)tdth2(t)dt.

Metrics