Abstract

We propose an all-fiber hybrid cavity involving two unbalanced uniform fiber Bragg gratings (FBGs) written at both sides of a tilted FBG (TFBG) to form an all-fiber interferometer. This configuration provides a wavelength gated reflection signal with interference fringes depending on the cavity features modulated by spectral dips associated to the wavelength dependent optical losses due to cladding mode coupling occurring along the TFBG. Such a robust structure preserves the advantages of uniform FBGs in terms of interrogation methods and allows the possibility of simultaneous physical and chemical sensing.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tilted Bragg grating multipoint sensor based on wavelength-gated cladding-modes coupling

Christophe Caucheteur, Patrice Mégret, and Andrea Cusano
Appl. Opt. 48(20) 3915-3920 (2009)

Polarimetric multi-mode tilted fiber grating sensors

Tuan Guo, Fu Liu, Bai-Ou Guan, and Jacques Albert
Opt. Express 22(6) 7330-7336 (2014)

Interrogation of coarsely sampled tilted fiber Bragg grating (TFBG) sensors with KLT

Madina Shaimerdenova, Aliya Bekmurzayeva, Marzhan Sypabekova, and Daniele Tosi
Opt. Express 25(26) 33487-33496 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [Crossref]
  2. A. Othonos, and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecomminications and Sensing (Artech House, Boston, 1999).
  3. R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 1999).
  4. L. Zhang, W. Zhang, and I. Bennion, “In-fiber grating optic sensors,” in Fiber Optics Sensors, F. T. S. Yu and S. Yin, eds. (Dekker, New York, 2002), Chap. 4.
  5. A. Mendez, “Fiber Bragg grating sensors: A market overview,” Proc. SPIE 6619, paper 661905 (2007).
  6. G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent wave sensors,” Proc. SPIE 2836, 342–350 (1996).
    [Crossref]
  7. K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proc. SPIE 3483, 90–94 (1998).
    [Crossref]
  8. A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
    [Crossref]
  9. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
    [Crossref]
  10. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
    [Crossref]
  11. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Microstructured fiber Bragg gratings: Analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
    [Crossref]
  12. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
    [Crossref]
  13. A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Opt. Express 15(23), 15011–15021 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15011 .
    [Crossref] [PubMed]
  14. D. Paladino, A. Iadicicco, S. Campopiano, and A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Opt. Express 17(2), 1042–1054 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-2-1042 .
    [Crossref] [PubMed]
  15. K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, “A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing,” Opt. Express 15(24), 15848–15853 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15848 .
    [Crossref] [PubMed]
  16. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [Crossref] [PubMed]
  17. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24(21), 1460–1462 (1999).
    [Crossref]
  18. N. Groothoff, I. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, “Bragg gratings in air-silica structured fibers,” Opt. Lett. 28(4), 233–235 (2003).
    [Crossref] [PubMed]
  19. L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
    [Crossref]
  20. S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
    [Crossref]
  21. M. C. P.han Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Meas. Sci. Technol. 17(5), 992–997 (2006).
    [Crossref]
  22. M. C. P Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
    [Crossref]
  23. A. Cusano, D. Paladino, and A. Iadicicco, “Micro-structured fiber Bragg gratings,” J. Lightwave Technol. 27(11), 1663–1697 (2009).
    [Crossref]
  24. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
    [Crossref]
  25. C. Chen and J. Albert, “Strain-optic coefficients of individual cladding modes of a singlemode fibre: theory and experiment,” Electron. Lett. 42(18), 1027–1028 (2006).
    [Crossref]
  26. S. Baek, Y. Jeong, and B. Lee, “Characteristics of short-period blazed fiber Bragg gratings for use as macro-bending sensors,” Appl. Opt. 41(4), 631–636 (2002).
    [Crossref] [PubMed]
  27. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
    [Crossref]
  28. C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
    [Crossref]
  29. C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J. 8(7), 1330–1336 (2008).
    [Crossref]
  30. C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.  46,1142–1149 (2007).
    [Crossref] [PubMed]
  31. T. Guo, C. Chen, A. Laronche, and J. Albert, “Power referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
    [Crossref]
  32. C. Caucheteur, M. Wuilpart, C. Chen, P. Mégret, and J. Albert, “Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry,” Opt. Express 16(22), 17882–17890 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17882 .
    [Crossref] [PubMed]
  33. C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurements,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
    [Crossref]
  34. S. Maguis, G. Laffont, P. Ferdinand, B. Carbonnier, K. Kham, T. Mekhalif, and M.-C. Millot, “Biofunctionalized tilted Fiber Bragg Gratings for label-free immunosensing,” Opt. Express 16(23), 19049–19062 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19049 .
    [Crossref]
  35. C. Caucheteur, P. Mégret, and A. Cusano, “Tilted Bragg grating multipoint sensor based on wavelength-gated cladding-modes coupling,” Appl. Opt. 48(20), 3915–3920 (2009).
    [Crossref] [PubMed]
  36. P. Childs, A. C. L. Wong, I. Leung, G.-D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
    [Crossref]
  37. Y. Liu and K. S. Chiang, “Fiber-Bragg-grating cavity sensor interrogated with a self-seeded Fabry-Pérot laser diode,” IEEE Photon. Technol. Lett. 18(20), 2153–2155 (2006).
    [Crossref]
  38. J. M. Vaughan, The Fabry-Perot Interforometer: History, Theory, Practice and Applications (Taylor & Francis Group, New York, 1989).
  39. A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Opt. Express 16(20), 15332–15342 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-20-15332 .
    [Crossref] [PubMed]

2009 (3)

2008 (7)

P. Childs, A. C. L. Wong, I. Leung, G.-D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
[Crossref]

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J. 8(7), 1330–1336 (2008).
[Crossref]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Opt. Express 16(20), 15332–15342 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-20-15332 .
[Crossref] [PubMed]

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

C. Caucheteur, M. Wuilpart, C. Chen, P. Mégret, and J. Albert, “Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry,” Opt. Express 16(22), 17882–17890 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17882 .
[Crossref] [PubMed]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurements,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

S. Maguis, G. Laffont, P. Ferdinand, B. Carbonnier, K. Kham, T. Mekhalif, and M.-C. Millot, “Biofunctionalized tilted Fiber Bragg Gratings for label-free immunosensing,” Opt. Express 16(23), 19049–19062 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19049 .
[Crossref]

2007 (4)

2006 (4)

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[Crossref]

M. C. P.han Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Meas. Sci. Technol. 17(5), 992–997 (2006).
[Crossref]

Y. Liu and K. S. Chiang, “Fiber-Bragg-grating cavity sensor interrogated with a self-seeded Fabry-Pérot laser diode,” IEEE Photon. Technol. Lett. 18(20), 2153–2155 (2006).
[Crossref]

C. Chen and J. Albert, “Strain-optic coefficients of individual cladding modes of a singlemode fibre: theory and experiment,” Electron. Lett. 42(18), 1027–1028 (2006).
[Crossref]

2005 (5)

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Microstructured fiber Bragg gratings: Analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

2004 (1)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

2003 (1)

2002 (1)

2001 (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

1999 (1)

1998 (2)

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proc. SPIE 3483, 90–94 (1998).
[Crossref]

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

1996 (3)

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Ahlfeldt, H.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

Albert, J.

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurements,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

C. Caucheteur, M. Wuilpart, C. Chen, P. Mégret, and J. Albert, “Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry,” Opt. Express 16(22), 17882–17890 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17882 .
[Crossref] [PubMed]

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.  46,1142–1149 (2007).
[Crossref] [PubMed]

C. Chen and J. Albert, “Strain-optic coefficients of individual cladding modes of a singlemode fibre: theory and experiment,” Electron. Lett. 42(18), 1027–1028 (2006).
[Crossref]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Andreev, A.

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proc. SPIE 3483, 90–94 (1998).
[Crossref]

Asseh, A.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

Atkin, D. M.

Auguste, J.-L.

Baek, S.

Bennion, I.

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Bette, S.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurements,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Birks, T. A.

Blanc, W.

M. C. P Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[Crossref]

M. C. P.han Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Meas. Sci. Technol. 17(5), 992–997 (2006).
[Crossref]

Blondy, J.-M.

M. C. P.han Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Meas. Sci. Technol. 17(5), 992–997 (2006).
[Crossref]

Bolger, J. A.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[Crossref]

Broeng, J.

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[Crossref]

Buckley, E.

Campopiano, S.

D. Paladino, A. Iadicicco, S. Campopiano, and A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Opt. Express 17(2), 1042–1054 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-2-1042 .
[Crossref] [PubMed]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Opt. Express 16(20), 15332–15342 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-20-15332 .
[Crossref] [PubMed]

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J. 8(7), 1330–1336 (2008).
[Crossref]

A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Opt. Express 15(23), 15011–15021 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15011 .
[Crossref] [PubMed]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Microstructured fiber Bragg gratings: Analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]

Canning, I.

Carbonnier, B.

Caucheteur, C.

C. Caucheteur, P. Mégret, and A. Cusano, “Tilted Bragg grating multipoint sensor based on wavelength-gated cladding-modes coupling,” Appl. Opt. 48(20), 3915–3920 (2009).
[Crossref] [PubMed]

C. Caucheteur, M. Wuilpart, C. Chen, P. Mégret, and J. Albert, “Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry,” Opt. Express 16(22), 17882–17890 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17882 .
[Crossref] [PubMed]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurements,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J. 8(7), 1330–1336 (2008).
[Crossref]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

Chan, C.-F.

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.  46,1142–1149 (2007).
[Crossref] [PubMed]

Chen, C.

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurements,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

C. Caucheteur, M. Wuilpart, C. Chen, P. Mégret, and J. Albert, “Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry,” Opt. Express 16(22), 17882–17890 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17882 .
[Crossref] [PubMed]

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.  46,1142–1149 (2007).
[Crossref] [PubMed]

C. Chen and J. Albert, “Strain-optic coefficients of individual cladding modes of a singlemode fibre: theory and experiment,” Electron. Lett. 42(18), 1027–1028 (2006).
[Crossref]

Chen, X.

Chiang, K. S.

Y. Liu and K. S. Chiang, “Fiber-Bragg-grating cavity sensor interrogated with a self-seeded Fabry-Pérot laser diode,” IEEE Photon. Technol. Lett. 18(20), 2153–2155 (2006).
[Crossref]

Childs, P.

P. Childs, A. C. L. Wong, I. Leung, G.-D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
[Crossref]

Cusano, A.

D. Paladino, A. Iadicicco, S. Campopiano, and A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Opt. Express 17(2), 1042–1054 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-2-1042 .
[Crossref] [PubMed]

A. Cusano, D. Paladino, and A. Iadicicco, “Micro-structured fiber Bragg gratings,” J. Lightwave Technol. 27(11), 1663–1697 (2009).
[Crossref]

C. Caucheteur, P. Mégret, and A. Cusano, “Tilted Bragg grating multipoint sensor based on wavelength-gated cladding-modes coupling,” Appl. Opt. 48(20), 3915–3920 (2009).
[Crossref] [PubMed]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Opt. Express 16(20), 15332–15342 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-20-15332 .
[Crossref] [PubMed]

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J. 8(7), 1330–1336 (2008).
[Crossref]

A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Opt. Express 15(23), 15011–15021 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15011 .
[Crossref] [PubMed]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Microstructured fiber Bragg gratings: Analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Cutolo, A.

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Opt. Express 16(20), 15332–15342 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-20-15332 .
[Crossref] [PubMed]

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J. 8(7), 1330–1336 (2008).
[Crossref]

A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Opt. Express 15(23), 15011–15021 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15011 .
[Crossref] [PubMed]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Microstructured fiber Bragg gratings: Analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Dewynter, V.

Dewynter-Marty, V.

M. C. P.han Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Meas. Sci. Technol. 17(5), 992–997 (2006).
[Crossref]

Ding, H.

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[Crossref]

Dussardier, B.

M. C. P Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[Crossref]

M. C. P.han Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Meas. Sci. Technol. 17(5), 992–997 (2006).
[Crossref]

Ecke, W.

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proc. SPIE 3483, 90–94 (1998).
[Crossref]

Edwall, G.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

Eggleton, B. J.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[Crossref]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24(21), 1460–1462 (1999).
[Crossref]

Erdogan, T.

Ferdinand, P.

S. Maguis, G. Laffont, P. Ferdinand, B. Carbonnier, K. Kham, T. Mekhalif, and M.-C. Millot, “Biofunctionalized tilted Fiber Bragg Gratings for label-free immunosensing,” Opt. Express 16(23), 19049–19062 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19049 .
[Crossref]

M. C. P Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[Crossref]

M. C. P.han Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Meas. Sci. Technol. 17(5), 992–997 (2006).
[Crossref]

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Frignac, Y.

M. C. P.han Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Meas. Sci. Technol. 17(5), 992–997 (2006).
[Crossref]

Fu, L. B.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[Crossref]

Giordano, M.

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J. 8(7), 1330–1336 (2008).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Microstructured fiber Bragg gratings: Analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Grobnic, D.

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[Crossref]

Groothoff, N.

Guo, T.

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

Hagemann, V.

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proc. SPIE 3483, 90–94 (1998).
[Crossref]

Hewlett, S. J.

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent wave sensors,” Proc. SPIE 2836, 342–350 (1996).
[Crossref]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Huy, M. C. P

Iadicicco, A.

D. Paladino, A. Iadicicco, S. Campopiano, and A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Opt. Express 17(2), 1042–1054 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-2-1042 .
[Crossref] [PubMed]

A. Cusano, D. Paladino, and A. Iadicicco, “Micro-structured fiber Bragg gratings,” J. Lightwave Technol. 27(11), 1663–1697 (2009).
[Crossref]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Opt. Express 16(20), 15332–15342 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-20-15332 .
[Crossref] [PubMed]

A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Opt. Express 15(23), 15011–15021 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15011 .
[Crossref] [PubMed]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Microstructured fiber Bragg gratings: Analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Jafari, A.

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.  46,1142–1149 (2007).
[Crossref] [PubMed]

Jeong, Y.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Kham, K.

Knight, J. C.

Laffont, G.

S. Maguis, G. Laffont, P. Ferdinand, B. Carbonnier, K. Kham, T. Mekhalif, and M.-C. Millot, “Biofunctionalized tilted Fiber Bragg Gratings for label-free immunosensing,” Opt. Express 16(23), 19049–19062 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19049 .
[Crossref]

M. C. P Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[Crossref]

M. C. P.han Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Meas. Sci. Technol. 17(5), 992–997 (2006).
[Crossref]

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Lai, Y.

Laronche, A.

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.  46,1142–1149 (2007).
[Crossref] [PubMed]

Lee, B.

Leung, I.

P. Childs, A. C. L. Wong, I. Leung, G.-D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
[Crossref]

Liao, Y. B.

P. Childs, A. C. L. Wong, I. Leung, G.-D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
[Crossref]

Liu, Y.

Y. Liu and K. S. Chiang, “Fiber-Bragg-grating cavity sensor interrogated with a self-seeded Fabry-Pérot laser diode,” IEEE Photon. Technol. Lett. 18(20), 2153–2155 (2006).
[Crossref]

Love, J. D.

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent wave sensors,” Proc. SPIE 2836, 342–350 (1996).
[Crossref]

Lyttikainen, K.

Mägi, E. C.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[Crossref]

Maguis, S.

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Marshall, G. D.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[Crossref]

Mégret, P.

C. Caucheteur, P. Mégret, and A. Cusano, “Tilted Bragg grating multipoint sensor based on wavelength-gated cladding-modes coupling,” Appl. Opt. 48(20), 3915–3920 (2009).
[Crossref] [PubMed]

C. Caucheteur, M. Wuilpart, C. Chen, P. Mégret, and J. Albert, “Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry,” Opt. Express 16(22), 17882–17890 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17882 .
[Crossref] [PubMed]

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J. 8(7), 1330–1336 (2008).
[Crossref]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurements,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

Mekhalif, T.

Meltz, G.

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent wave sensors,” Proc. SPIE 2836, 342–350 (1996).
[Crossref]

Mihailov, S. J.

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[Crossref]

Millot, M.-C.

Mueller, R.

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proc. SPIE 3483, 90–94 (1998).
[Crossref]

P.han Huy, M. C.

M. C. P.han Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Meas. Sci. Technol. 17(5), 992–997 (2006).
[Crossref]

Pagnoux, D.

M. C. P Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[Crossref]

M. C. P.han Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Meas. Sci. Technol. 17(5), 992–997 (2006).
[Crossref]

Paladino, D.

Peng, G.-D.

P. Childs, A. C. L. Wong, I. Leung, G.-D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
[Crossref]

Pilla, P.

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J. 8(7), 1330–1336 (2008).
[Crossref]

Roy, P.

M. C. P Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[Crossref]

M. C. P.han Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Meas. Sci. Technol. 17(5), 992–997 (2006).
[Crossref]

Russell, P. St. J.

Sahlgren, B.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

Sandgren, S.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

Sipe, J. E.

Smelser, C. W.

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[Crossref]

Spälter, S.

Steinvurzel, P.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[Crossref]

Strasser, T. A.

Stubbe, R.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

Sugden, K.

Thomson, D. J.

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.  46,1142–1149 (2007).
[Crossref] [PubMed]

Usbeck, K.

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proc. SPIE 3483, 90–94 (1998).
[Crossref]

Westbrook, P. S.

Willsch, R.

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proc. SPIE 3483, 90–94 (1998).
[Crossref]

Windeler, R. S.

Withford, M. J.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[Crossref]

Wong, A. C. L.

P. Childs, A. C. L. Wong, I. Leung, G.-D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
[Crossref]

Wuilpart, M.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurements,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

C. Caucheteur, M. Wuilpart, C. Chen, P. Mégret, and J. Albert, “Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry,” Opt. Express 16(22), 17882–17890 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17882 .
[Crossref] [PubMed]

Zagari, J.

Zhang, L.

Zhou, K.

Appl. Opt (1)

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.  46,1142–1149 (2007).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Electron. Lett. (3)

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Microstructured fiber Bragg gratings: Analysis and fabrication,” Electron. Lett. 41(8), 466–468 (2005).
[Crossref]

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[Crossref]

C. Chen and J. Albert, “Strain-optic coefficients of individual cladding modes of a singlemode fibre: theory and experiment,” Electron. Lett. 42(18), 1027–1028 (2006).
[Crossref]

Fiber Integr. Opt. (1)

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (8)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
[Crossref]

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[Crossref]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurements,” IEEE Photon. Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[Crossref]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

Y. Liu and K. S. Chiang, “Fiber-Bragg-grating cavity sensor interrogated with a self-seeded Fabry-Pérot laser diode,” IEEE Photon. Technol. Lett. 18(20), 2153–2155 (2006).
[Crossref]

IEEE Sens. J. (1)

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, and P. Mégret, “External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses,” IEEE Sens. J. 8(7), 1330–1336 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (3)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

M. C. P.han Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Meas. Sci. Technol. 17(5), 992–997 (2006).
[Crossref]

P. Childs, A. C. L. Wong, I. Leung, G.-D. Peng, and Y. B. Liao, “An in-line in-fibre ring cavity sensor for localized multi-parameter sensing,” Meas. Sci. Technol. 19(6), 065302 (2008).
[Crossref]

Opt. Express (6)

S. Maguis, G. Laffont, P. Ferdinand, B. Carbonnier, K. Kham, T. Mekhalif, and M.-C. Millot, “Biofunctionalized tilted Fiber Bragg Gratings for label-free immunosensing,” Opt. Express 16(23), 19049–19062 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19049 .
[Crossref]

C. Caucheteur, M. Wuilpart, C. Chen, P. Mégret, and J. Albert, “Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry,” Opt. Express 16(22), 17882–17890 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17882 .
[Crossref] [PubMed]

A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Opt. Express 15(23), 15011–15021 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15011 .
[Crossref] [PubMed]

D. Paladino, A. Iadicicco, S. Campopiano, and A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Opt. Express 17(2), 1042–1054 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-2-1042 .
[Crossref] [PubMed]

K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, “A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing,” Opt. Express 15(24), 15848–15853 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15848 .
[Crossref] [PubMed]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Opt. Express 16(20), 15332–15342 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-20-15332 .
[Crossref] [PubMed]

Opt. Lett. (4)

Proc. SPIE (2)

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent wave sensors,” Proc. SPIE 2836, 342–350 (1996).
[Crossref]

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proc. SPIE 3483, 90–94 (1998).
[Crossref]

Other (5)

A. Othonos, and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecomminications and Sensing (Artech House, Boston, 1999).

R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 1999).

L. Zhang, W. Zhang, and I. Bennion, “In-fiber grating optic sensors,” in Fiber Optics Sensors, F. T. S. Yu and S. Yin, eds. (Dekker, New York, 2002), Chap. 4.

A. Mendez, “Fiber Bragg grating sensors: A market overview,” Proc. SPIE 6619, paper 661905 (2007).

J. M. Vaughan, The Fabry-Perot Interforometer: History, Theory, Practice and Applications (Taylor & Francis Group, New York, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic diagram of the proposed all-fiber hybrid interferometric cavity (not in scale).
Fig. 2
Fig. 2 Realization of the 2° all-fiber hybrid cavity: schematic diagram (not in scale) and reflected spectrum (a) after only uniform FBGs writing and (b) after adding the TFBG.
Fig. 3
Fig. 3 4° TFBG hybrid cavity spectra for different temperatures ranging between 20 and 70°C.
Fig. 4
Fig. 4 4° TFBG hybrid cavity characterization versus temperature (20-70°C): (a) Shifts of the central wavelength; (b) Normalized reflectance changes.
Fig. 5
Fig. 5 4° TFBG hybrid cavity spectra for different applied mass (meaning different longitudinal strain state along the cavity) ranging between 5.063 and 30.110 g.
Fig. 6
Fig. 6 4° TFBG hybrid cavity characterization versus applied mass (5.063-30.110 g): (a) Shifts of the central wavelength; (b) Normalized reflectance changes.
Fig. 7
Fig. 7 4° TFBG hybrid cavity spectra for different SRIs ranging between 1.4332 and 1.4699.
Fig. 8
Fig. 8 4° TFBG hybrid cavity characterization versus SRI: (a) Normalized reflectance changes; (b) Shifts of the central wavelength.
Fig. 9
Fig. 9 Schematic diagram of the setup utilized for the bending characterization (not in scale).
Fig. 10
Fig. 10 2° TFBG hybrid cavity spectra for different curvature radii varying from 8 to 16 mm.
Fig. 11
Fig. 11 2° TFBG hybrid cavity characterization versus bending state: (a) Normalized reflectance changes; (b) Shifts of the central wavelength.
Fig. 12
Fig. 12 FFT analysis of the 4° TFBG hybrid cavity spectral response for different SRIs.
Fig. 13
Fig. 13 Schematic diagram of a simple interrogation setup to interrogate several multiplexed all-fiber hybrid cavity structures for multi-parametric measurements (not in scale).

Tables (1)

Tables Icon

Table 1 Resume of the investigated cavities features.

Metrics