F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79(5), 053808 (2009).
[Crossref]
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]
P. B. Bareil, Y. Sheng, Y. Q. Chen, and A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Opt. Express 15(24), 16029–16034 (2007).
[Crossref]
[PubMed]
T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[Crossref]
M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref]
[PubMed]
P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69(5), 1666–1673 (1995).
[Crossref]
[PubMed]
S. M. Block, “Making light work with optical tweezers,” Nature 360(6403), 493–495 (1992).
[Crossref]
[PubMed]
A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref]
[PubMed]
Y. C. Fung, “Theoretical considerations of the elasticity of red cells and small blood vessels,” Fed. Proc. 25(6), 1761–1772 (1966).
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref]
[PubMed]
G. B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16(3), 1996–2004 (2008).
[Crossref]
[PubMed]
P. B. Bareil, Y. Sheng, Y. Q. Chen, and A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Opt. Express 15(24), 16029–16034 (2007).
[Crossref]
[PubMed]
S. M. Block, “Making light work with optical tweezers,” Nature 360(6403), 493–495 (1992).
[Crossref]
[PubMed]
P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69(5), 1666–1673 (1995).
[Crossref]
[PubMed]
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]
P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69(5), 1666–1673 (1995).
[Crossref]
[PubMed]
G. B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16(3), 1996–2004 (2008).
[Crossref]
[PubMed]
P. B. Bareil, Y. Sheng, Y. Q. Chen, and A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Opt. Express 15(24), 16029–16034 (2007).
[Crossref]
[PubMed]
P. B. Bareil, Y. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14(25), 12503 (2006).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]
A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref]
[PubMed]
Y. C. Fung, “Theoretical considerations of the elasticity of red cells and small blood vessels,” Fed. Proc. 25(6), 1761–1772 (1966).
[PubMed]
S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref]
[PubMed]
F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79(5), 053808 (2009).
[Crossref]
P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69(5), 1666–1673 (1995).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]
T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[Crossref]
S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]
S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref]
[PubMed]
M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]
F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79(5), 053808 (2009).
[Crossref]
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]
T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[Crossref]
P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69(5), 1666–1673 (1995).
[Crossref]
[PubMed]
S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref]
[PubMed]
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]
T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[Crossref]
G. B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16(3), 1996–2004 (2008).
[Crossref]
[PubMed]
P. B. Bareil, Y. Sheng, Y. Q. Chen, and A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Opt. Express 15(24), 16029–16034 (2007).
[Crossref]
[PubMed]
P. B. Bareil, Y. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14(25), 12503 (2006).
[Crossref]
[PubMed]
P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69(5), 1666–1673 (1995).
[Crossref]
[PubMed]
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]
P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69(5), 1666–1673 (1995).
[Crossref]
[PubMed]
M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]
F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79(5), 053808 (2009).
[Crossref]
F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79(5), 053808 (2009).
[Crossref]
A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref]
[PubMed]
P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69(5), 1666–1673 (1995).
[Crossref]
[PubMed]
J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]
[PubMed]
Y. C. Fung, “Theoretical considerations of the elasticity of red cells and small blood vessels,” Fed. Proc. 25(6), 1761–1772 (1966).
[PubMed]
M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[Crossref]
T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[Crossref]
A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref]
[PubMed]
S. M. Block, “Making light work with optical tweezers,” Nature 360(6403), 493–495 (1992).
[Crossref]
[PubMed]
G. B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16(3), 1996–2004 (2008).
[Crossref]
[PubMed]
P. B. Bareil, Y. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14(25), 12503 (2006).
[Crossref]
[PubMed]
M. Mansuripur, “Electromagnetic stress tensor in ponderable media,” Opt. Express 16(8), 5193–5198 (2008).
[Crossref]
[PubMed]
P. B. Bareil, Y. Sheng, Y. Q. Chen, and A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Opt. Express 15(24), 16029–16034 (2007).
[Crossref]
[PubMed]
F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Optical stress on the surface of a particle: homogeneous sphere,” Phys. Rev. A 79(5), 053808 (2009).
[Crossref]
E. Ventsel, and T. Krauthammer, Thin plate and shells (Marcel Dekket, New York, 2001).
W. G. Lee, H. Bang, J. Park, S. Chung, K. Cho, C. Chung, D.-C. Han, and J. K. Chang, “Combined microchannel-type erythrocyte deformability test with optical tweezers,” Proc. of SPIE.6088, 608813–1-12, (2006).