Abstract

We evaluate various signal processing methods to handle the non-linearity in wavenumber space exhibited by most laser sources for swept-source optical coherence tomography. The following methods are compared for the same set of experimental data: non-uniform discrete Fourier transforms with Vandermonde matrix or with Lomb periodogram, resampling with linear interpolation or spline interpolation prior to fast-Fourier transform (FFT), and resampling with convolution prior to FFT. By selecting an optimized Kaiser-Bessel window to perform the convolution, we show that convolution followed by FFT is the most efficient method. It allows small fractional oversampling factor between 1 and 2, thus a minimal computational time, while retaining an excellent image quality.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [CrossRef]
  2. G. Häusler and M. W. Linduer, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
    [CrossRef]
  3. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007).
    [CrossRef] [PubMed]
  4. G. V. Gelikonov, V. M. Gelikonov, and P. A. Shilyagin, “Linear wave-number spectrometer for spectral domain optical coherence tomography,” Proc. SPIE 6847, 68470N (2008).
    [CrossRef]
  5. V. Gelikonov, G. Gelikonov, and P. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
    [CrossRef]
  6. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8916 .
    [CrossRef] [PubMed]
  7. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
    [CrossRef]
  8. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
    [CrossRef]
  9. B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt. 12(4), 041214–041218 (2007).
    [CrossRef] [PubMed]
  10. E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-583 .
    [CrossRef] [PubMed]
  11. M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
    [CrossRef]
  12. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2435 .
    [CrossRef] [PubMed]
  13. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000).
    [CrossRef]
  14. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-26-3598 .
    [CrossRef] [PubMed]
  15. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-26-10652 .
    [CrossRef] [PubMed]
  16. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-367 .
    [CrossRef] [PubMed]
  17. A. R. Tumlinson, B. Hofer, A. M. Winkler, B. Považay, W. Drexler, and J. K. Barton, “Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling,” Appl. Opt. 47(5), 687–693 (2008).
    [CrossRef] [PubMed]
  18. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferometry,” Opt. Express 13(3), 695–701 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-695 .
    [CrossRef] [PubMed]
  19. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1054 .
    [CrossRef] [PubMed]
  20. C. Fan, Y. Wang, and R. K. Wang, “Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection,” Opt. Express 15(13), 7950–7961 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-7950 .
    [CrossRef] [PubMed]
  21. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 .
    [CrossRef] [PubMed]
  22. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2156 .
    [CrossRef] [PubMed]
  23. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 .
    [CrossRef] [PubMed]
  24. Y. T. Pan, Q. Wu, Z. G. Wang, P. R. Brink, and C. W. Du, “High-resolution imaging characterization of bladder dynamic morphophysiology by time-lapse optical coherence tomography,” Opt. Lett. 30(17), 2263–2265 (2005).
    [CrossRef] [PubMed]
  25. H. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. Li, “Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography,” Opt. Lett. 31(7), 927–929 (2006).
    [CrossRef] [PubMed]
  26. P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A, Pure Appl. Opt. 9(4), 422–426 (2007).
    [CrossRef]
  27. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
    [CrossRef]
  28. Y. Chen, H. Zhao, and Z. Wang, “Investigation on spectral-domain optical coherence tomography using a tungsten halogen lamp as light source,” Opt. Rev. 16(1), 26–29 (2009).
    [CrossRef]
  29. A. Liu, R. Wang, K. L. Thornburg, and S. Rugonyi, “Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart,” J. Biomed. Opt. 14(4), 044020–044011 (2009).
    [CrossRef] [PubMed]
  30. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3513 .
    [CrossRef] [PubMed]
  31. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, F. Hlawatsch, and W. Drexler, “Signal post processing in frequency domain OCT and OCM using a filter bank approach,” Proc. SPIE 6443, 64430O (2007).
    [CrossRef]
  32. S. S. Sherif, C. Flueraru, Y. Mao, and S. Change, “Swept Source Optical Coherence Tomography with Nonuniform Frequency Domain Sampling,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper BMD86.
  33. T. H. Chow, S. G. Razul, B. K. Ng, G. Ho, and C. B. A. Yeo, “Enhancement of Fourier domain optical coherence tomorgraphy images using discrete Fourier transform method,” Proc. SPIE 6847, 68472T (2008).
    [CrossRef]
  34. K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express 17(14), 12121–12131 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-12121 .
    [CrossRef] [PubMed]
  35. D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R (2009).
    [CrossRef]
  36. Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, and G. Shi, “Time-domain interpolation for Fourier-domain optical coherence tomography,” Opt. Lett. 34(12), 1849–1851 (2009).
    [CrossRef] [PubMed]
  37. I. Gohberg and V. Olshevsky, “Fast algorithms with preprocessing for matrix-vector multiplication problems,” J. Complexity 10(4), 411–427 (1994).
    [CrossRef]
  38. V. V. Vityazev, “Time series analysis of unequally spaced data: Intercomparison between the Schuster periodogram and the LS-spectra,” Astron. Astrophys. Trans. 11(2), 139–158 (1996).
    [CrossRef]
  39. N. R. Lomb, “Least-squares frequency analysis of unequally spaced data,” Astrophys. Space Sci. 39(2), 447–462 (1976).
    [CrossRef]
  40. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN (Cambridge University Press, New York, 1992).
  41. P. N. Swarztrauber, Vectorizing the FFTs, in Parallel Computations, G. Rodrigue, ed. (Academic Press, New York, NY, 1982), pp. 51–83.
  42. M. Frigo, and S. G. Johnson, “FFTW: an adaptive software architecture for the FFT,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. (Institute of Electrical and Electronics Engineers, Seattle, 1998), pp. 1381–1384.
  43. J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution function for Fourier inversion using gridding computerised tomography application,” IEEE Trans. Med. Imaging 10(3), 473–478 (1991).
    [CrossRef] [PubMed]
  44. P. J. Beatty, D. G. Nishimura, and J. M. Pauly, “Rapid gridding reconstruction with a minimal oversampling ratio,” IEEE Trans. Med. Imaging 24(6), 799–808 (2005).
    [CrossRef] [PubMed]
  45. C.-É. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(237–N), 247 (2008).
    [CrossRef]

2009 (6)

V. Gelikonov, G. Gelikonov, and P. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
[CrossRef]

Y. Chen, H. Zhao, and Z. Wang, “Investigation on spectral-domain optical coherence tomography using a tungsten halogen lamp as light source,” Opt. Rev. 16(1), 26–29 (2009).
[CrossRef]

A. Liu, R. Wang, K. L. Thornburg, and S. Rugonyi, “Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart,” J. Biomed. Opt. 14(4), 044020–044011 (2009).
[CrossRef] [PubMed]

D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R (2009).
[CrossRef]

Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, and G. Shi, “Time-domain interpolation for Fourier-domain optical coherence tomography,” Opt. Lett. 34(12), 1849–1851 (2009).
[CrossRef] [PubMed]

K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express 17(14), 12121–12131 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-12121 .
[CrossRef] [PubMed]

2008 (5)

A. R. Tumlinson, B. Hofer, A. M. Winkler, B. Považay, W. Drexler, and J. K. Barton, “Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling,” Appl. Opt. 47(5), 687–693 (2008).
[CrossRef] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8916 .
[CrossRef] [PubMed]

G. V. Gelikonov, V. M. Gelikonov, and P. A. Shilyagin, “Linear wave-number spectrometer for spectral domain optical coherence tomography,” Proc. SPIE 6847, 68470N (2008).
[CrossRef]

T. H. Chow, S. G. Razul, B. K. Ng, G. Ho, and C. B. A. Yeo, “Enhancement of Fourier domain optical coherence tomorgraphy images using discrete Fourier transform method,” Proc. SPIE 6847, 68472T (2008).
[CrossRef]

C.-É. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(237–N), 247 (2008).
[CrossRef]

2007 (8)

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1054 .
[CrossRef] [PubMed]

C. Fan, Y. Wang, and R. K. Wang, “Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection,” Opt. Express 15(13), 7950–7961 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-7950 .
[CrossRef] [PubMed]

Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007).
[CrossRef] [PubMed]

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, F. Hlawatsch, and W. Drexler, “Signal post processing in frequency domain OCT and OCM using a filter bank approach,” Proc. SPIE 6443, 64430O (2007).
[CrossRef]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[CrossRef]

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt. 12(4), 041214–041218 (2007).
[CrossRef] [PubMed]

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A, Pure Appl. Opt. 9(4), 422–426 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

2006 (1)

2005 (8)

E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-583 .
[CrossRef] [PubMed]

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferometry,” Opt. Express 13(3), 695–701 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-695 .
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3513 .
[CrossRef] [PubMed]

Y. T. Pan, Q. Wu, Z. G. Wang, P. R. Brink, and C. W. Du, “High-resolution imaging characterization of bladder dynamic morphophysiology by time-lapse optical coherence tomography,” Opt. Lett. 30(17), 2263–2265 (2005).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-26-10652 .
[CrossRef] [PubMed]

P. J. Beatty, D. G. Nishimura, and J. M. Pauly, “Rapid gridding reconstruction with a minimal oversampling ratio,” IEEE Trans. Med. Imaging 24(6), 799–808 (2005).
[CrossRef] [PubMed]

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[CrossRef]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef]

2004 (4)

2003 (2)

2000 (1)

1998 (1)

G. Häusler and M. W. Linduer, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

1996 (1)

V. V. Vityazev, “Time series analysis of unequally spaced data: Intercomparison between the Schuster periodogram and the LS-spectra,” Astron. Astrophys. Trans. 11(2), 139–158 (1996).
[CrossRef]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

1994 (1)

I. Gohberg and V. Olshevsky, “Fast algorithms with preprocessing for matrix-vector multiplication problems,” J. Complexity 10(4), 411–427 (1994).
[CrossRef]

1991 (1)

J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution function for Fourier inversion using gridding computerised tomography application,” IEEE Trans. Med. Imaging 10(3), 473–478 (1991).
[CrossRef] [PubMed]

1976 (1)

N. R. Lomb, “Least-squares frequency analysis of unequally spaced data,” Astrophys. Space Sci. 39(2), 447–462 (1976).
[CrossRef]

Adler, D. C.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[CrossRef]

Akiba, M.

Bajraszewski, T.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[CrossRef]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2156 .
[CrossRef] [PubMed]

Barton, J. K.

Baumann, B.

Beatty, P. J.

P. J. Beatty, D. G. Nishimura, and J. M. Pauly, “Rapid gridding reconstruction with a minimal oversampling ratio,” IEEE Trans. Med. Imaging 24(6), 799–808 (2005).
[CrossRef] [PubMed]

Belabas, N.

Biedermann, B. R.

Bisaillon, C.-É.

C.-É. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(237–N), 247 (2008).
[CrossRef]

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

Bouma, B.

Bouma, B. E.

Bower, B. A.

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt. 12(4), 041214–041218 (2007).
[CrossRef] [PubMed]

Brink, P. R.

Bu, P.

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A, Pure Appl. Opt. 9(4), 422–426 (2007).
[CrossRef]

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

Cense, B.

Chan, K.-P.

Chen, M.

Chen, T.

Chen, T. C.

Chen, Y.

Y. Chen, H. Zhao, and Z. Wang, “Investigation on spectral-domain optical coherence tomography using a tungsten halogen lamp as light source,” Opt. Rev. 16(1), 26–29 (2009).
[CrossRef]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[CrossRef]

Choma, M. A.

Chong, C.

Chow, T. H.

T. H. Chow, S. G. Razul, B. K. Ng, G. Ho, and C. B. A. Yeo, “Enhancement of Fourier domain optical coherence tomorgraphy images using discrete Fourier transform method,” Proc. SPIE 6847, 68472T (2008).
[CrossRef]

Cobb, M. J.

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[CrossRef]

de Boer, J.

de Boer, J. F.

Ding, Z.

Dorrer, C.

Drexler, W.

Du, C. W.

Dufour, M.

C.-É. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(237–N), 247 (2008).
[CrossRef]

Duker, J. S.

Eigenwillig, C. M.

El Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Endo, T.

Fan, C.

Fercher, A. F.

Fujimoto, J.

Fujimoto, J. G.

Gelikonov, G.

V. Gelikonov, G. Gelikonov, and P. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
[CrossRef]

Gelikonov, G. V.

G. V. Gelikonov, V. M. Gelikonov, and P. A. Shilyagin, “Linear wave-number spectrometer for spectral domain optical coherence tomography,” Proc. SPIE 6847, 68470N (2008).
[CrossRef]

Gelikonov, V.

V. Gelikonov, G. Gelikonov, and P. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
[CrossRef]

Gelikonov, V. M.

G. V. Gelikonov, V. M. Gelikonov, and P. A. Shilyagin, “Linear wave-number spectrometer for spectral domain optical coherence tomography,” Proc. SPIE 6847, 68470N (2008).
[CrossRef]

Gohberg, I.

I. Gohberg and V. Olshevsky, “Fast algorithms with preprocessing for matrix-vector multiplication problems,” J. Complexity 10(4), 411–427 (1994).
[CrossRef]

Gorczynska, I.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[CrossRef]

Götzinger, E.

Häusler, G.

G. Häusler and M. W. Linduer, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

Hermann, B.

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, F. Hlawatsch, and W. Drexler, “Signal post processing in frequency domain OCT and OCM using a filter bank approach,” Proc. SPIE 6443, 64430O (2007).
[CrossRef]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2156 .
[CrossRef] [PubMed]

Hillmann, D.

D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R (2009).
[CrossRef]

Hitzenberger, C. K.

Hlawatsch, F.

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, F. Hlawatsch, and W. Drexler, “Signal post processing in frequency domain OCT and OCM using a filter bank approach,” Proc. SPIE 6443, 64430O (2007).
[CrossRef]

Ho, G.

T. H. Chow, S. G. Razul, B. K. Ng, G. Ho, and C. B. A. Yeo, “Enhancement of Fourier domain optical coherence tomorgraphy images using discrete Fourier transform method,” Proc. SPIE 6847, 68472T (2008).
[CrossRef]

Hofer, B.

A. R. Tumlinson, B. Hofer, A. M. Winkler, B. Považay, W. Drexler, and J. K. Barton, “Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling,” Appl. Opt. 47(5), 687–693 (2008).
[CrossRef] [PubMed]

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, F. Hlawatsch, and W. Drexler, “Signal post processing in frequency domain OCT and OCM using a filter bank approach,” Proc. SPIE 6443, 64430O (2007).
[CrossRef]

Hsu, K.

Hu, Z.

Huber, R.

Huttmann, G.

D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R (2009).
[CrossRef]

Itoh, M.

Izatt, J. A.

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt. 12(4), 041214–041218 (2007).
[CrossRef] [PubMed]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 .
[CrossRef] [PubMed]

Jackson, J. I.

J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution function for Fourier inversion using gridding computerised tomography application,” IEEE Trans. Med. Imaging 10(3), 473–478 (1991).
[CrossRef] [PubMed]

Joffre, M.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Ko, T. H.

Koch, P.

D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R (2009).
[CrossRef]

Kowalczyk, A.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[CrossRef]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 .
[CrossRef] [PubMed]

Lamouche, G.

C.-É. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(237–N), 247 (2008).
[CrossRef]

Le, T.

Leitgeb, R. A.

Li, X.

Likforman, J.-P.

Linduer, M. W.

G. Häusler and M. W. Linduer, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

Liu, A.

A. Liu, R. Wang, K. L. Thornburg, and S. Rugonyi, “Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart,” J. Biomed. Opt. 14(4), 044020–044011 (2009).
[CrossRef] [PubMed]

Lomb, N. R.

N. R. Lomb, “Least-squares frequency analysis of unequally spaced data,” Astrophys. Space Sci. 39(2), 447–462 (1976).
[CrossRef]

MacDonald, D. J.

Maciejko, R.

C.-É. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(237–N), 247 (2008).
[CrossRef]

Macovski, A.

J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution function for Fourier inversion using gridding computerised tomography application,” IEEE Trans. Med. Imaging 10(3), 473–478 (1991).
[CrossRef] [PubMed]

Madjarova, V. D.

Makita, S.

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

Matz, G.

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, F. Hlawatsch, and W. Drexler, “Signal post processing in frequency domain OCT and OCM using a filter bank approach,” Proc. SPIE 6443, 64430O (2007).
[CrossRef]

Meng, J.

Meyer, C. H.

J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution function for Fourier inversion using gridding computerised tomography application,” IEEE Trans. Med. Imaging 10(3), 473–478 (1991).
[CrossRef] [PubMed]

Monchalin, J.-P.

C.-É. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(237–N), 247 (2008).
[CrossRef]

Morosawa, A.

Nassif, N. A.

Ng, B. K.

T. H. Chow, S. G. Razul, B. K. Ng, G. Ho, and C. B. A. Yeo, “Enhancement of Fourier domain optical coherence tomorgraphy images using discrete Fourier transform method,” Proc. SPIE 6847, 68472T (2008).
[CrossRef]

Nishimura, D. G.

P. J. Beatty, D. G. Nishimura, and J. M. Pauly, “Rapid gridding reconstruction with a minimal oversampling ratio,” IEEE Trans. Med. Imaging 24(6), 799–808 (2005).
[CrossRef] [PubMed]

J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution function for Fourier inversion using gridding computerised tomography application,” IEEE Trans. Med. Imaging 10(3), 473–478 (1991).
[CrossRef] [PubMed]

Olshevsky, V.

I. Gohberg and V. Olshevsky, “Fast algorithms with preprocessing for matrix-vector multiplication problems,” J. Complexity 10(4), 411–427 (1994).
[CrossRef]

Palte, G.

Pan, Y. T.

Park, B. H.

Pauly, J. M.

P. J. Beatty, D. G. Nishimura, and J. M. Pauly, “Rapid gridding reconstruction with a minimal oversampling ratio,” IEEE Trans. Med. Imaging 24(6), 799–808 (2005).
[CrossRef] [PubMed]

Pierce, M. C.

Pircher, M.

Považay, B.

A. R. Tumlinson, B. Hofer, A. M. Winkler, B. Považay, W. Drexler, and J. K. Barton, “Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling,” Appl. Opt. 47(5), 687–693 (2008).
[CrossRef] [PubMed]

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, F. Hlawatsch, and W. Drexler, “Signal post processing in frequency domain OCT and OCM using a filter bank approach,” Proc. SPIE 6443, 64430O (2007).
[CrossRef]

Radzewicz, C.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[CrossRef]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

Razul, S. G.

T. H. Chow, S. G. Razul, B. K. Ng, G. Ho, and C. B. A. Yeo, “Enhancement of Fourier domain optical coherence tomorgraphy images using discrete Fourier transform method,” Proc. SPIE 6847, 68472T (2008).
[CrossRef]

Ren, H.

Rollins, A. M.

Rugonyi, S.

A. Liu, R. Wang, K. L. Thornburg, and S. Rugonyi, “Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart,” J. Biomed. Opt. 14(4), 044020–044011 (2009).
[CrossRef] [PubMed]

Sakai, T.

Sarunic, M. V.

Sasaki, O.

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A, Pure Appl. Opt. 9(4), 422–426 (2007).
[CrossRef]

Schmitt, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[CrossRef]

Shi, G.

Shilyagin, P.

V. Gelikonov, G. Gelikonov, and P. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
[CrossRef]

Shilyagin, P. A.

G. V. Gelikonov, V. M. Gelikonov, and P. A. Shilyagin, “Linear wave-number spectrometer for spectral domain optical coherence tomography,” Proc. SPIE 6847, 68470N (2008).
[CrossRef]

Srinivasan, V. J.

Stingl, A.

Sun, T.

Szkulmowski, M.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[CrossRef]

Taira, K.

Targowski, P.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[CrossRef]

Tearney, G.

Tearney, G. J.

Thornburg, K. L.

A. Liu, R. Wang, K. L. Thornburg, and S. Rugonyi, “Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart,” J. Biomed. Opt. 14(4), 044020–044011 (2009).
[CrossRef] [PubMed]

Tumlinson, A. R.

Unterhuber, A.

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, F. Hlawatsch, and W. Drexler, “Signal post processing in frequency domain OCT and OCM using a filter bank approach,” Proc. SPIE 6443, 64430O (2007).
[CrossRef]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2156 .
[CrossRef] [PubMed]

Vityazev, V. V.

V. V. Vityazev, “Time series analysis of unequally spaced data: Intercomparison between the Schuster periodogram and the LS-spectra,” Astron. Astrophys. Trans. 11(2), 139–158 (1996).
[CrossRef]

Wang, C.

Wang, K.

Wang, R.

A. Liu, R. Wang, K. L. Thornburg, and S. Rugonyi, “Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart,” J. Biomed. Opt. 14(4), 044020–044011 (2009).
[CrossRef] [PubMed]

Wang, R. K.

Wang, X.

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A, Pure Appl. Opt. 9(4), 422–426 (2007).
[CrossRef]

Wang, Y.

Wang, Z.

Y. Chen, H. Zhao, and Z. Wang, “Investigation on spectral-domain optical coherence tomography using a tungsten halogen lamp as light source,” Opt. Rev. 16(1), 26–29 (2009).
[CrossRef]

Wang, Z. G.

Wasilewski, W.

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[CrossRef]

Wei, L.

Winkler, A. M.

Wojtkowski, M.

Wu, Q.

Wu, T.

Xu, L.

Yang, C.

Yasuno, Y.

Yatagai, T.

Yeo, C. B. A.

T. H. Chow, S. G. Razul, B. K. Ng, G. Ho, and C. B. A. Yeo, “Enhancement of Fourier domain optical coherence tomorgraphy images using discrete Fourier transform method,” Proc. SPIE 6847, 68472T (2008).
[CrossRef]

Yun, S. H.

Yun, S.-H.

Zawadzki, R. J.

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt. 12(4), 041214–041218 (2007).
[CrossRef] [PubMed]

Zhang, Y.

Zhao, H.

Y. Chen, H. Zhao, and Z. Wang, “Investigation on spectral-domain optical coherence tomography using a tungsten halogen lamp as light source,” Opt. Rev. 16(1), 26–29 (2009).
[CrossRef]

Zhao, M.

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt. 12(4), 041214–041218 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Astron. Astrophys. Trans. (1)

V. V. Vityazev, “Time series analysis of unequally spaced data: Intercomparison between the Schuster periodogram and the LS-spectra,” Astron. Astrophys. Trans. 11(2), 139–158 (1996).
[CrossRef]

Astrophys. Space Sci. (1)

N. R. Lomb, “Least-squares frequency analysis of unequally spaced data,” Astrophys. Space Sci. 39(2), 447–462 (1976).
[CrossRef]

IEEE Trans. Med. Imaging (2)

J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution function for Fourier inversion using gridding computerised tomography application,” IEEE Trans. Med. Imaging 10(3), 473–478 (1991).
[CrossRef] [PubMed]

P. J. Beatty, D. G. Nishimura, and J. M. Pauly, “Rapid gridding reconstruction with a minimal oversampling ratio,” IEEE Trans. Med. Imaging 24(6), 799–808 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

G. Häusler and M. W. Linduer, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef]

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt. 12(4), 041214–041218 (2007).
[CrossRef] [PubMed]

A. Liu, R. Wang, K. L. Thornburg, and S. Rugonyi, “Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart,” J. Biomed. Opt. 14(4), 044020–044011 (2009).
[CrossRef] [PubMed]

J. Complexity (1)

I. Gohberg and V. Olshevsky, “Fast algorithms with preprocessing for matrix-vector multiplication problems,” J. Complexity 10(4), 411–427 (1994).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A, Pure Appl. Opt. 9(4), 422–426 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[CrossRef]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

Opt. Commun. (2)

M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express (14)

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-26-3598 .
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-367 .
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 .
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2156 .
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 .
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2435 .
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-583 .
[CrossRef] [PubMed]

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferometry,” Opt. Express 13(3), 695–701 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-695 .
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3513 .
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-26-10652 .
[CrossRef] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1054 .
[CrossRef] [PubMed]

C. Fan, Y. Wang, and R. K. Wang, “Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection,” Opt. Express 15(13), 7950–7961 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-7950 .
[CrossRef] [PubMed]

K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express 17(14), 12121–12131 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-12121 .
[CrossRef] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8916 .
[CrossRef] [PubMed]

Opt. Lett. (4)

Opt. Rev. (1)

Y. Chen, H. Zhao, and Z. Wang, “Investigation on spectral-domain optical coherence tomography using a tungsten halogen lamp as light source,” Opt. Rev. 16(1), 26–29 (2009).
[CrossRef]

Opt. Spectrosc. (1)

V. Gelikonov, G. Gelikonov, and P. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
[CrossRef]

Phys. Med. Biol. (1)

C.-É. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(237–N), 247 (2008).
[CrossRef]

Proc. SPIE (4)

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, F. Hlawatsch, and W. Drexler, “Signal post processing in frequency domain OCT and OCM using a filter bank approach,” Proc. SPIE 6443, 64430O (2007).
[CrossRef]

G. V. Gelikonov, V. M. Gelikonov, and P. A. Shilyagin, “Linear wave-number spectrometer for spectral domain optical coherence tomography,” Proc. SPIE 6847, 68470N (2008).
[CrossRef]

T. H. Chow, S. G. Razul, B. K. Ng, G. Ho, and C. B. A. Yeo, “Enhancement of Fourier domain optical coherence tomorgraphy images using discrete Fourier transform method,” Proc. SPIE 6847, 68472T (2008).
[CrossRef]

D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R (2009).
[CrossRef]

Other (4)

S. S. Sherif, C. Flueraru, Y. Mao, and S. Change, “Swept Source Optical Coherence Tomography with Nonuniform Frequency Domain Sampling,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper BMD86.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN (Cambridge University Press, New York, 1992).

P. N. Swarztrauber, Vectorizing the FFTs, in Parallel Computations, G. Rodrigue, ed. (Academic Press, New York, NY, 1982), pp. 51–83.

M. Frigo, and S. G. Johnson, “FFTW: an adaptive software architecture for the FFT,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. (Institute of Electrical and Electronics Engineers, Seattle, 1998), pp. 1381–1384.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

SS-OCT setup. Cp1 and Cp2: couplers, PC: polarization controller, Cir1 and Cir2: circulators and D: balanced detection.

Fig. 2.
Fig. 2.

PSFs after Vandermonde processing. (a) 1 A-scan per PSF. (b) averaging of 1000 A-scans per PSF.

Fig. 3.
Fig. 3.

PSFs for various signal processing methods.

Fig. 4.
Fig. 4.

SNR as a function of depth for different processing methods. For clarity, the results for the various methods are distributed over multiple figures, with the Vandermonde result being present in all the figures for reference.

Fig. 5.
Fig. 5.

Maximum amplitude of the PSF (left) and FWHM (right) as a function of depth for different processing methods, after averaging over 100 A-scans.

Fig. 6.
Fig. 6.

OCT images of a 4-layer phantom using different signal processing methods. Images are 6.5 cm wide by 6.5 cm deep. Each axis tic mark corresponds to 1 mm. Gray-scale is a log. scale, the dynamic range is 40 dB.

Fig. 7.
Fig. 7.

OCT images of a finger nail of a healthy volunteer using different signal processing methods. Images are 14.0 cm wide by 6.5 cm deep. Each axis tic mark corresponds to 1 mm. Gray-scale is a log. scale, the dynamic range is 40 dB.

Tables (1)

Tables Icon

Table 1. Computational timesa for 1000 A-scans (ms).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Uk=n=0N1 un γkn , γk=ei2πNk
un=k uk γkn=DUk
D=[111γ01γ11γN11γ0N1γ1N1γN1N1]
γk=ei(kkmin)δz
δz=2π(kmaxkmin)
U(ω)2=12σ2{[nuncosω(tnτ)]2ncos2ω(tnτ)+[nunsinω(tnτ)]2nsin2ω(tnτ)},
tan2ωτ=nsin2ωtnncos2ωtn .
δk=(kmaxkmin)=2πNδz,δz=2π(kmaxkmin)
Uk=Uk+wk(Uk+Uk),wk=kkk+k
cn=(/N)2sin2/N)
Uk=akUk+bkUk++fkU"k+gk U"k+
cn=jdj (nδz)j
Uk=j=1M Uj Ckj
Ckj=I0 (β1(2κ/M)2) / M , κ=kkjδkM2
β=πM2α2(α12)20.8
cn=(nπM/N)2β2sin((nπM/N)2β2)
SNR=20log10 (Aμσ2σ)

Metrics