Abstract

The coherent transport of surface plasmons with nonlinear dispersion relations on a metal nanowire coupled to two-level emitters is investigated theoretically. Real-space Hamiltonians are used to obtain the transmission and reflection spectra of the surface plasmons. For the single-dot case, we find that the scattering spectra can show completely different features due to the non-linear quadratic dispersion relation. For the double-dot case, we obtain the interference behavior in transmission and reflection spectra, similar to that in resonant tunneling through a double-barrier potential. Moreover, Fano-like line shape of the transmission spectrum is obtained due to the quadratic dispersion relation. All these peculiar behaviors indicate that the dot-nanowire system provides a one-dimensional platform to demonstrate the bandgap feature widely observed in photonic crystals.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
    [CrossRef] [PubMed]
  2. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
    [CrossRef] [PubMed]
  3. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
    [CrossRef] [PubMed]
  4. K. Srinivasan, and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
    [CrossRef] [PubMed]
  5. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
    [CrossRef] [PubMed]
  6. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
    [CrossRef]
  7. M. Rosenblit, P. Horak, S. Helsby, and R. Folman, “Single-atom detection using whispering-gallery modes of microdisk resonators,” Phys. Rev. A 70, 053808 (2004).
    [CrossRef]
  8. P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
    [CrossRef]
  9. J. T. Shen, and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30, 2001 (2005).
    [CrossRef] [PubMed]
  10. J. T. Shen, and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
    [CrossRef]
  11. L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
    [CrossRef] [PubMed]
  12. L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
    [CrossRef]
  13. J. Q. Liao, Z. R. Gong, L. Zhou, Y. X. Liu, C. P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
    [CrossRef]
  14. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
    [CrossRef] [PubMed]
  15. Y. Fedutik, V. V. Temnov, O. Schops, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
    [CrossRef] [PubMed]
  16. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
    [CrossRef] [PubMed]
  17. G. Y. Chen, Y. N. Chen, and D. S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett. 33, 2212–2214 (2008).
    [CrossRef] [PubMed]
  18. Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, “Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics,” Phys. Rev. A 79, 033815 (2009).
    [CrossRef]
  19. Y. N. Chen, G. Y. Chen, Y. Y. Liao, N. Lambert, and F. Nori, “Detecting non-Markovian plasmonic band gaps in quantum dots using electron transport,” Phys. Rev. B 79, 245312 (2009).
    [CrossRef]
  20. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
    [CrossRef]
  21. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
    [CrossRef]
  22. K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savelev, and F. Nori, “Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201 (2008).
    [CrossRef]
  23. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  24. S. John, “Localization of Light,” Phys. Today 44, 32–40 (1991).
    [CrossRef]
  25. S. Savelev, A. L. Rakhmanov, and F. Nori, “Using Josephson Vortex Lattices to Control Terahertz Radiation: Tunable Transparency and Terahertz Photonic Crystals,” Phys. Rev. Lett. 94, 157004 (2005).
    [CrossRef] [PubMed]
  26. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [CrossRef]

2010 (1)

J. Q. Liao, Z. R. Gong, L. Zhou, Y. X. Liu, C. P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[CrossRef]

2009 (5)

J. T. Shen, and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[CrossRef]

Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, “Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics,” Phys. Rev. A 79, 033815 (2009).
[CrossRef]

Y. N. Chen, G. Y. Chen, Y. Y. Liao, N. Lambert, and F. Nori, “Detecting non-Markovian plasmonic band gaps in quantum dots using electron transport,” Phys. Rev. B 79, 245312 (2009).
[CrossRef]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[CrossRef]

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

2008 (6)

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savelev, and F. Nori, “Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201 (2008).
[CrossRef]

G. Y. Chen, Y. N. Chen, and D. S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett. 33, 2212–2214 (2008).
[CrossRef] [PubMed]

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[CrossRef] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[CrossRef] [PubMed]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[CrossRef] [PubMed]

L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[CrossRef]

2007 (4)

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Y. Fedutik, V. V. Temnov, O. Schops, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

K. Srinivasan, and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
[CrossRef] [PubMed]

2006 (2)

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

2005 (3)

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef] [PubMed]

J. T. Shen, and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30, 2001 (2005).
[CrossRef] [PubMed]

S. Savelev, A. L. Rakhmanov, and F. Nori, “Using Josephson Vortex Lattices to Control Terahertz Radiation: Tunable Transparency and Terahertz Photonic Crystals,” Phys. Rev. Lett. 94, 157004 (2005).
[CrossRef] [PubMed]

2004 (2)

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef] [PubMed]

M. Rosenblit, P. Horak, S. Helsby, and R. Folman, “Single-atom detection using whispering-gallery modes of microdisk resonators,” Phys. Rev. A 70, 053808 (2004).
[CrossRef]

1991 (1)

S. John, “Localization of Light,” Phys. Today 44, 32–40 (1991).
[CrossRef]

1987 (1)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

1961 (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Akimov, A. V.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Aoki, T.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[CrossRef] [PubMed]

Artemyev, M. V.

Y. Fedutik, V. V. Temnov, O. Schops, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Bermel, P.

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
[CrossRef]

Birnbaum, K. M.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef] [PubMed]

Blais, A.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef] [PubMed]

Bliokh, K. Y.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savelev, and F. Nori, “Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201 (2008).
[CrossRef]

Bliokh, Y. P.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savelev, and F. Nori, “Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201 (2008).
[CrossRef]

Boca, A.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef] [PubMed]

Boozer, A. D.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef] [PubMed]

Brandes, T.

Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, “Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics,” Phys. Rev. A 79, 033815 (2009).
[CrossRef]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Chen, G. Y.

Y. N. Chen, G. Y. Chen, Y. Y. Liao, N. Lambert, and F. Nori, “Detecting non-Markovian plasmonic band gaps in quantum dots using electron transport,” Phys. Rev. B 79, 245312 (2009).
[CrossRef]

Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, “Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics,” Phys. Rev. A 79, 033815 (2009).
[CrossRef]

G. Y. Chen, Y. N. Chen, and D. S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett. 33, 2212–2214 (2008).
[CrossRef] [PubMed]

Chen, Y. N.

Y. N. Chen, G. Y. Chen, Y. Y. Liao, N. Lambert, and F. Nori, “Detecting non-Markovian plasmonic band gaps in quantum dots using electron transport,” Phys. Rev. B 79, 245312 (2009).
[CrossRef]

Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, “Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics,” Phys. Rev. A 79, 033815 (2009).
[CrossRef]

G. Y. Chen, Y. N. Chen, and D. S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett. 33, 2212–2214 (2008).
[CrossRef] [PubMed]

Chuu, D. S.

Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, “Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics,” Phys. Rev. A 79, 033815 (2009).
[CrossRef]

G. Y. Chen, Y. N. Chen, and D. S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett. 33, 2212–2214 (2008).
[CrossRef] [PubMed]

Dayan, B.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[CrossRef] [PubMed]

Demler, E. A.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

Dong, H.

L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[CrossRef]

Falk, A. L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Fan, S.

J. T. Shen, and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[CrossRef]

J. T. Shen, and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30, 2001 (2005).
[CrossRef] [PubMed]

Fano, U.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Fedutik, Y.

Y. Fedutik, V. V. Temnov, O. Schops, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Folman, R.

M. Rosenblit, P. Horak, S. Helsby, and R. Folman, “Single-atom detection using whispering-gallery modes of microdisk resonators,” Phys. Rev. A 70, 053808 (2004).
[CrossRef]

Freilikher, V.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savelev, and F. Nori, “Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201 (2008).
[CrossRef]

Frunzio, L.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef] [PubMed]

Girvin, S. M.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef] [PubMed]

Gong, Z. R.

J. Q. Liao, Z. R. Gong, L. Zhou, Y. X. Liu, C. P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[CrossRef]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[CrossRef] [PubMed]

Helsby, S.

M. Rosenblit, P. Horak, S. Helsby, and R. Folman, “Single-atom detection using whispering-gallery modes of microdisk resonators,” Phys. Rev. A 70, 053808 (2004).
[CrossRef]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Horak, P.

M. Rosenblit, P. Horak, S. Helsby, and R. Folman, “Single-atom detection using whispering-gallery modes of microdisk resonators,” Phys. Rev. A 70, 053808 (2004).
[CrossRef]

Huang, R. S.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef] [PubMed]

Jo, M. H.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Joannopoulos, J. D.

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
[CrossRef]

John, S.

S. John, “Localization of Light,” Phys. Today 44, 32–40 (1991).
[CrossRef]

Johnson, S. G.

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
[CrossRef]

Kang, K.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Kimble, H. J.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[CrossRef] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[CrossRef] [PubMed]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef] [PubMed]

Koppens, F. H. L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Kumar, S.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef] [PubMed]

Lambert, N.

Y. N. Chen, G. Y. Chen, Y. Y. Liao, N. Lambert, and F. Nori, “Detecting non-Markovian plasmonic band gaps in quantum dots using electron transport,” Phys. Rev. B 79, 245312 (2009).
[CrossRef]

Liao, J. Q.

J. Q. Liao, Z. R. Gong, L. Zhou, Y. X. Liu, C. P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[CrossRef]

Liao, Y. Y.

Y. N. Chen, G. Y. Chen, Y. Y. Liao, N. Lambert, and F. Nori, “Detecting non-Markovian plasmonic band gaps in quantum dots using electron transport,” Phys. Rev. B 79, 245312 (2009).
[CrossRef]

Liu, Y. X.

J. Q. Liao, Z. R. Gong, L. Zhou, Y. X. Liu, C. P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[CrossRef]

L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[CrossRef]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[CrossRef] [PubMed]

Lukin, M. D.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Majer, J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef] [PubMed]

Matthews, J. C. F.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[CrossRef]

Miller, R.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Nori, F.

J. Q. Liao, Z. R. Gong, L. Zhou, Y. X. Liu, C. P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[CrossRef]

Y. N. Chen, G. Y. Chen, Y. Y. Liao, N. Lambert, and F. Nori, “Detecting non-Markovian plasmonic band gaps in quantum dots using electron transport,” Phys. Rev. B 79, 245312 (2009).
[CrossRef]

L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[CrossRef]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[CrossRef] [PubMed]

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savelev, and F. Nori, “Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201 (2008).
[CrossRef]

S. Savelev, A. L. Rakhmanov, and F. Nori, “Using Josephson Vortex Lattices to Control Terahertz Radiation: Tunable Transparency and Terahertz Photonic Crystals,” Phys. Rev. Lett. 94, 157004 (2005).
[CrossRef] [PubMed]

Northup, T. E.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef] [PubMed]

O’Brien, J. L.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[CrossRef]

Ostby, E. P.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[CrossRef] [PubMed]

Painter, O.

K. Srinivasan, and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
[CrossRef] [PubMed]

Park, H.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Parkins, A. S.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[CrossRef] [PubMed]

Politi, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[CrossRef]

Rakhmanov, A. L.

S. Savelev, A. L. Rakhmanov, and F. Nori, “Using Josephson Vortex Lattices to Control Terahertz Radiation: Tunable Transparency and Terahertz Photonic Crystals,” Phys. Rev. Lett. 94, 157004 (2005).
[CrossRef] [PubMed]

Rodriguez, A.

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
[CrossRef]

Rosenblit, M.

M. Rosenblit, P. Horak, S. Helsby, and R. Folman, “Single-atom detection using whispering-gallery modes of microdisk resonators,” Phys. Rev. A 70, 053808 (2004).
[CrossRef]

Savelev, S.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savelev, and F. Nori, “Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201 (2008).
[CrossRef]

S. Savelev, A. L. Rakhmanov, and F. Nori, “Using Josephson Vortex Lattices to Control Terahertz Radiation: Tunable Transparency and Terahertz Photonic Crystals,” Phys. Rev. Lett. 94, 157004 (2005).
[CrossRef] [PubMed]

Schoelkopf, R. J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef] [PubMed]

Schops, O.

Y. Fedutik, V. V. Temnov, O. Schops, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Schuster, D. I.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef] [PubMed]

Shen, J. T.

J. T. Shen, and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[CrossRef]

J. T. Shen, and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30, 2001 (2005).
[CrossRef] [PubMed]

Snapp, N. D.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Soljacic, M.

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
[CrossRef]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Srinivasan, K.

K. Srinivasan, and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
[CrossRef] [PubMed]

Stefanov, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[CrossRef]

Sun, C. P.

J. Q. Liao, Z. R. Gong, L. Zhou, Y. X. Liu, C. P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[CrossRef]

L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[CrossRef]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[CrossRef] [PubMed]

Temnov, V. V.

Y. Fedutik, V. V. Temnov, O. Schops, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Vahala, K. J.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[CrossRef] [PubMed]

Wallraff, A.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef] [PubMed]

Woggon, U.

Y. Fedutik, V. V. Temnov, O. Schops, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Yu, C. L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Zhou, L.

J. Q. Liao, Z. R. Gong, L. Zhou, Y. X. Liu, C. P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[CrossRef]

L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[CrossRef]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[CrossRef] [PubMed]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[CrossRef]

Nat. Phys. (2)

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Nature (5)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[CrossRef] [PubMed]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[CrossRef] [PubMed]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[CrossRef] [PubMed]

K. Srinivasan, and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Phys. Rev. A (6)

M. Rosenblit, P. Horak, S. Helsby, and R. Folman, “Single-atom detection using whispering-gallery modes of microdisk resonators,” Phys. Rev. A 70, 053808 (2004).
[CrossRef]

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
[CrossRef]

J. T. Shen, and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[CrossRef]

L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[CrossRef]

J. Q. Liao, Z. R. Gong, L. Zhou, Y. X. Liu, C. P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[CrossRef]

Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, “Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics,” Phys. Rev. A 79, 033815 (2009).
[CrossRef]

Phys. Rev. B (1)

Y. N. Chen, G. Y. Chen, Y. Y. Liao, N. Lambert, and F. Nori, “Detecting non-Markovian plasmonic band gaps in quantum dots using electron transport,” Phys. Rev. B 79, 245312 (2009).
[CrossRef]

Phys. Rev. Lett. (5)

Y. Fedutik, V. V. Temnov, O. Schops, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136802 (2007).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[CrossRef] [PubMed]

S. Savelev, A. L. Rakhmanov, and F. Nori, “Using Josephson Vortex Lattices to Control Terahertz Radiation: Tunable Transparency and Terahertz Photonic Crystals,” Phys. Rev. Lett. 94, 157004 (2005).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Phys. Today (1)

S. John, “Localization of Light,” Phys. Today 44, 32–40 (1991).
[CrossRef]

Rev. Mod. Phys. (1)

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savelev, and F. Nori, “Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201 (2008).
[CrossRef]

Science (1)

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic view of the model: a silver nanowire coupled to two QDs. (b) Dispersion relations of the nanowire surface plasmons for the modes n = 0 to n = 3 [17, 18]. The unit for the axes are Ω =ω/ωp , and K = kc/ωp . This figure is for the case of R = 0.1, where Rωpa/c is the effective radius of the QD, which is roughly equal to 53.8 nm. Here, the separation between QDs and nanowire is 10.76 nm.

Fig. 2.
Fig. 2.

Transmission (solid black) and reflection (dashed red) spectra of the single-QD case for g = 1 (in unit of 104ωpc/4π for detunings (in unit of 10-4 ωp ) (a) δ = 0, (b) δ = 0.1, (c) δ = -0.1, and (d) δ = -0.2. Here, the detuning is defined as: δωc - Ω.

Fig. 3.
Fig. 3.

Transmission (solid black) and reflection (dashed red) spectra of the double-QD case with g=1 and δ = 0 for different inter-dot distance (a) d = 0, (b) d = 3, (c) d = 6, and (d)d= 12. In plotting this figure, δ is in unit of 10-4 ωp , g is in unit of 104ωpc/4π , and d is in unit of c/ωp .

Fig. 4.
Fig. 4.

(a) Transmission (solid black) and reflection (dashed red) spectra with d = 6, g=1, δ = 0 and k 0 = 15. (b) Magnification of the region with probability ranging from 0 to 4 × 10-4. (c) The intersections of functions X (green dotted curve) and Y (blue solid curve) represent the zeros of R. In plotting this figure, δ is in unit of 10-4 ωp , g is in unit of 104ωpc/4π , k 0 is in unit of ωp /c, and d is in unit of c/ωp .

Fig. 5.
Fig. 5.

Transmission (solid black) and reflection (dashed red) spectra of the double-QD case with d = 6 and δ = 0 for different couplings (a) g = 0.7, (b) g = 1.5, (c) g = 7 and (d) g= 15. In plotting this figure, δ is in unit of 10-4 ωp , g is in unit of 104ωpc/4π , and d is in unit of c/ωp .

Fig. 6.
Fig. 6.

Transmission (solid black) and reflection (dashed red) spectra of the double-QD case with δ 1 = 0, δ 2 = -0.05, d = 0, and g 1 = 1 for different coupling (a) g 2 = 1, (b) g 2 =0.5, and (c) g 2 = 0.1 between SP and QD2; (d) is for g 2 = 0.1 in a small scale of K. In plotting this figure, δ 1 and δ 2 are both in unit of 10-4 ωp , g is in unit of 104ωpc/4π , and d is in unit of c/ωp .

Fig. 7.
Fig. 7.

Schematic diagram of the two quantum dots coupled to two separate wires with finite length.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

H=kh¯ωkakak+j=1,2h¯Ωσej,ej
+kh¯2πh¯ωkVΩD·ek[(akσe1,g1+akeikdσe2,g2)+h.c.],
HSP=kh¯[ωc+A(kk0)2]akak
Hint=kh¯g[(akσe1,g1+akσg1,e1)+(akeikdσe2,g2+akeikdσg2,e2)]
HQD=j=1,2h¯Ωσej,ej,
H˜SP=dx{(h¯ωc+h¯Ak02)[CR(x)CR(x)+CL(x)CL(x)]
2h¯k0[iCR(x)xCR(x)+iCL(x)xCL(x)]
+h¯A [xCR(x)xCR(x)+xCL(x)xCL(x)] }
H˜int=dx{2πgj=1,2δ(x(j1)d)[CR(x)σgj,ej
+CR(x)σej,gj+CL(x)σgj,ej+CL(x)σej,gj]}
H˜QD=j=1,2(Eeσej,ej+Egσgj,gj) ,
Ek=dx[ϕk,R(x)CR(x)+ϕk,L(x)CL(x)]0,g1,g2
+j=1,2ekjaejagj0,g1,g2
Tt2=[F(k)]4D(k)
Rr2=16g4[F(k)cos(kd)2g2sin(kd)]2D(k) ,
T=[F(k)]216π2g4+[F(k)]2
R=16π2g416π2g4+[F(k)]2 .
X=h¯A (k+2k0) [A(kk0)2+δ] cos(kd)
Y=2g2sin(kd)
T=A4(kk0)4(k+2k0)2Δ224A2(kk0)4g24+8A(kk0)2g22Δ2
+[4+A4(kk0)4(k+2k0)2] Δ22
R=4[A(kk0)2(1+g22)+δ2]24A2(kk0)4g24+8A(kk0)2g22Δ2 ,
+[4+A4(kk0)4(k+2k0)2] Δ22
k=k0±(g22δ1+g12δ2)A(g12+g22) .

Metrics