Abstract

An all-optical wavelength multicasting scheme using four-wave mixing (FWM) in a highly nonlinear fiber (HNLF) Sagnac loop mirror has been demonstrated. This proposed scheme has the advantage that even when the wavelength of a multicast channel overlaps with the pump-pump generated idler, clear eye diagram can still be observed. Six and ten 10-Gb/s multicast channels, compliant with the ITU grid, are successfully obtained by using two- and three-pump lasers, respectively. Multicasting of on-off shift keying (OOK) and differential phase-shift keying (DPSK) signals are both successfully demonstrated. The maximum power penalty of the multicast channels is less than 3.5 dB. Furthermore, compared with the non-loop configuration, up to 1.2 dB power penalty improvement can be achieved in this proposed Sagnac loop configuration.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. N. Rouskas, “Optical layer multicast: Rationale, building blocks, and challenges,” IEEE/ACM Trans. Netw. 17(1), 60–65 (2003).
  2. C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive all optical wavelength multicasting by self phase-modulation in a photonic-crystal fiber,” in Proceedings of CLEO2006, Long Beach, CA, May 2006, Paper CTuD4.
  3. J. J. Yu, X. Y. Zheng, F. H. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppsen, “8 × 40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(3), 912–914 (2000).
    [CrossRef]
  4. N. Yan, H.-D. Jung, I. T. Monroy, H. D. Waardt, and T. Koonen, “All-optical multi-wavelength conversion with negative power penalty by a commercial SOA-MZI for WDM wavelength multicast,” in Proceedings of OFC 2007, Anaheim, CA, Mar. 2007, Paper JWA36.
  5. G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photon. Technol. Lett. 18(1), 181–183 (2006).
    [CrossRef]
  6. K. K. Y. Wong, G. W. Lu, K. C. Lau, P. K. A. Wai, and L. K. Chen, “All-optical wavelength conversion and multicasting by cross-gain modulation in a single-stage fiber optical parametric amplifier,” in Proceedings of OFC 2007, Anaheim, CA, Mar. 2007, Paper OTuI4.
  7. L. Xu, N. Chi, K. Yvind, L. Christiansen, L. Oxenløwe, J. Mørk, P. Jeppesen, and J. Hanberg, “7x 40 Gb/s base-rate RZ all-optical broadcasting utilizing an electroabsorption modulator,” Opt. Express 12(3), 416–420 (2004).
    [CrossRef] [PubMed]
  8. K. K. Chow and C. Shu, “All-optical signal regeneration with wavelength multicasting at 6x10 Gb/s using a single electroabsorption modulator,” Opt. Express 12(13), 3050–3054 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-3050 .
    [CrossRef] [PubMed]
  9. C.-S. Brès, N. Alic, E. Myslivets, and S. Radic, “Scalable multicasting in one-pump parametric amplifier,” J. Lightwave Technol. 27(3), 356–363 (2009).
    [CrossRef]
  10. C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
    [CrossRef]
  11. R. Elschner, C.-A. Bunge, B. HÜttl, A. G. i Coca, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, and K. Petermann, “Impact of pump-phase modulation on FWM-based wavelength conversion of D(Q)PSK signals,” IEEE J. Sel. Top. Quantum Electron. 14(3), 666–673 (2008).
    [CrossRef]
  12. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
    [CrossRef]
  13. Y. J. Wen, J. Mo, Y. Wang, and C. Lu, “Advanced data modulation techniques for WDM transmission,” IEEE Commun. Mag. 44(8), 58–65 (2006).
    [CrossRef]
  14. X. Zhou and J. Yu, “Multi-level, multi-dimensional coding for high speed and high-spectral efficiency optical transmission,” J. Lightwave Technol. 27(16), 3641–3653 (2009).
    [CrossRef]
  15. M. P. Fok and C. Shu, “Performance investigation of one-to-six wavelength multicasting of ASK-DPSK signal in a highly nonlinear bismuth oxide fiber,” J. Lightwave Technol. 27(15), 2953–2957 (2009).
    [CrossRef]
  16. Y. Wang, C. Yu, T. Luo, L. Yan, Z. Pan, and A. E. Willner, “Tunable all-optical wavelength conversion and wavelength multicasting using orthogonally polarized fiber FWM,” J. Lightwave Technol. 23(10), 3331–3338 (2005).
    [CrossRef]
  17. K. Lau, S. H. Wang, L. Xu, C. Lu, H. Y. Tam, and P. K. A. Wai, “All-optical multicast switch employing Raman-assisted FWM in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 20(20), 1730–1732 (2008).
    [CrossRef]
  18. G.-W. Lu, K. S. Abedin, and T. Miyazaki, “DPSK multicast using multiple-pump FWM in Bismuths highly nonlinear fiber with high multicast efficiency,” Opt. Express 16(26), 21964–21970 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21964 .
    [CrossRef] [PubMed]
  19. K. Mori, T. Morioka, and M. Saruwatari, “Optical parametric loop mirror,” Opt. Lett. 20(12), 1424–1426 (1995).
    [CrossRef] [PubMed]
  20. E. A. Swanson and J. D. Moores, “A fiber frequency shifter with broad bandwidth, high conversion efficiency, pump and pump ASE cancellation, and rapid tenability for WDM optical networks,” IEEE Photon. Technol. Lett. 6(11), 1341–1343 (1994).
    [CrossRef]
  21. J. Liu, Y. K. Yeo, Y. Wang, L. Xue, D. Wang, W. Rong, L. Zhou, G. Xiao, X. Yu, and T. H. Cheng, “Pump-suppressed non-degenerate four-wave mixing in a highly nonlinear photonic crystal fiber Sagnac loop,” IEEE Photon. Technol. Lett. 20(24), 2129–2131 (2008).
    [CrossRef]
  22. T. Torounidis, B.-E. Olsson, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Fiber-optics parametric amplifier in a loop mirror configuration,” IEEE Photon. Technol. Lett. 17(2), 321–323 (2005).
    [CrossRef]
  23. M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: Semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13(10), 2099–2112 (1995).
    [CrossRef]
  24. S. N. Fu, P. Shum, L. Zhang, C. Wu, and A. M. Liu, “Design of SOA-based dual-loop optical buffer with a 3 /spl times/ 3 collinear coupler: guideline and optimizations,” J. Lightwave Technol. 24(7), 2768–2778 (2006).
    [CrossRef]
  25. G. P. Agrawal, The Nonlinear Fiber Optics, 4th edition. (Academic, 2007), pp. 329–363.
  26. A. Zhang and M. S. Demokan, “Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber,” Opt. Lett. 30(18), 2375–2377 (2005).
    [CrossRef] [PubMed]
  27. M. Takahashi, K. Mukasa, and T. Yagi, “Full C-L band tunable wavelength conversion by zero dispersion and zero dispersion slope HNLF,” in Proceedings of ECOC 2009, Vienna, Austria, Sept. 2009, Paper P1.08.

2009 (4)

2008 (4)

G.-W. Lu, K. S. Abedin, and T. Miyazaki, “DPSK multicast using multiple-pump FWM in Bismuths highly nonlinear fiber with high multicast efficiency,” Opt. Express 16(26), 21964–21970 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21964 .
[CrossRef] [PubMed]

R. Elschner, C.-A. Bunge, B. HÜttl, A. G. i Coca, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, and K. Petermann, “Impact of pump-phase modulation on FWM-based wavelength conversion of D(Q)PSK signals,” IEEE J. Sel. Top. Quantum Electron. 14(3), 666–673 (2008).
[CrossRef]

J. Liu, Y. K. Yeo, Y. Wang, L. Xue, D. Wang, W. Rong, L. Zhou, G. Xiao, X. Yu, and T. H. Cheng, “Pump-suppressed non-degenerate four-wave mixing in a highly nonlinear photonic crystal fiber Sagnac loop,” IEEE Photon. Technol. Lett. 20(24), 2129–2131 (2008).
[CrossRef]

K. Lau, S. H. Wang, L. Xu, C. Lu, H. Y. Tam, and P. K. A. Wai, “All-optical multicast switch employing Raman-assisted FWM in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 20(20), 1730–1732 (2008).
[CrossRef]

2006 (3)

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photon. Technol. Lett. 18(1), 181–183 (2006).
[CrossRef]

S. N. Fu, P. Shum, L. Zhang, C. Wu, and A. M. Liu, “Design of SOA-based dual-loop optical buffer with a 3 /spl times/ 3 collinear coupler: guideline and optimizations,” J. Lightwave Technol. 24(7), 2768–2778 (2006).
[CrossRef]

Y. J. Wen, J. Mo, Y. Wang, and C. Lu, “Advanced data modulation techniques for WDM transmission,” IEEE Commun. Mag. 44(8), 58–65 (2006).
[CrossRef]

2005 (4)

2004 (2)

2003 (1)

G. N. Rouskas, “Optical layer multicast: Rationale, building blocks, and challenges,” IEEE/ACM Trans. Netw. 17(1), 60–65 (2003).

2000 (1)

J. J. Yu, X. Y. Zheng, F. H. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppsen, “8 × 40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(3), 912–914 (2000).
[CrossRef]

1995 (2)

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: Semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13(10), 2099–2112 (1995).
[CrossRef]

K. Mori, T. Morioka, and M. Saruwatari, “Optical parametric loop mirror,” Opt. Lett. 20(12), 1424–1426 (1995).
[CrossRef] [PubMed]

1994 (1)

E. A. Swanson and J. D. Moores, “A fiber frequency shifter with broad bandwidth, high conversion efficiency, pump and pump ASE cancellation, and rapid tenability for WDM optical networks,” IEEE Photon. Technol. Lett. 6(11), 1341–1343 (1994).
[CrossRef]

Abedin, K. S.

Alic, N.

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

C.-S. Brès, N. Alic, E. Myslivets, and S. Radic, “Scalable multicasting in one-pump parametric amplifier,” J. Lightwave Technol. 27(3), 356–363 (2009).
[CrossRef]

Andrekson, P. A.

T. Torounidis, B.-E. Olsson, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Fiber-optics parametric amplifier in a loop mirror configuration,” IEEE Photon. Technol. Lett. 17(2), 321–323 (2005).
[CrossRef]

Brès, C.-S.

C.-S. Brès, N. Alic, E. Myslivets, and S. Radic, “Scalable multicasting in one-pump parametric amplifier,” J. Lightwave Technol. 27(3), 356–363 (2009).
[CrossRef]

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

Bunge, C.-A.

R. Elschner, C.-A. Bunge, B. HÜttl, A. G. i Coca, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, and K. Petermann, “Impact of pump-phase modulation on FWM-based wavelength conversion of D(Q)PSK signals,” IEEE J. Sel. Top. Quantum Electron. 14(3), 666–673 (2008).
[CrossRef]

Calabretta, N.

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photon. Technol. Lett. 18(1), 181–183 (2006).
[CrossRef]

Cheng, T. H.

J. Liu, Y. K. Yeo, Y. Wang, L. Xue, D. Wang, W. Rong, L. Zhou, G. Xiao, X. Yu, and T. H. Cheng, “Pump-suppressed non-degenerate four-wave mixing in a highly nonlinear photonic crystal fiber Sagnac loop,” IEEE Photon. Technol. Lett. 20(24), 2129–2131 (2008).
[CrossRef]

Chi, N.

Chow, K. K.

Christiansen, L.

Ciaramella, E.

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photon. Technol. Lett. 18(1), 181–183 (2006).
[CrossRef]

Clausen, A. T.

J. J. Yu, X. Y. Zheng, F. H. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppsen, “8 × 40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(3), 912–914 (2000).
[CrossRef]

Contestabile, G.

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photon. Technol. Lett. 18(1), 181–183 (2006).
[CrossRef]

Demokan, M. S.

Eiselt, M.

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: Semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13(10), 2099–2112 (1995).
[CrossRef]

Elschner, R.

R. Elschner, C.-A. Bunge, B. HÜttl, A. G. i Coca, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, and K. Petermann, “Impact of pump-phase modulation on FWM-based wavelength conversion of D(Q)PSK signals,” IEEE J. Sel. Top. Quantum Electron. 14(3), 666–673 (2008).
[CrossRef]

Fok, M. P.

Fu, S. N.

Gnauck, A. H.

Hanberg, J.

HÜttl, B.

R. Elschner, C.-A. Bunge, B. HÜttl, A. G. i Coca, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, and K. Petermann, “Impact of pump-phase modulation on FWM-based wavelength conversion of D(Q)PSK signals,” IEEE J. Sel. Top. Quantum Electron. 14(3), 666–673 (2008).
[CrossRef]

i Coca, A. G.

R. Elschner, C.-A. Bunge, B. HÜttl, A. G. i Coca, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, and K. Petermann, “Impact of pump-phase modulation on FWM-based wavelength conversion of D(Q)PSK signals,” IEEE J. Sel. Top. Quantum Electron. 14(3), 666–673 (2008).
[CrossRef]

Jeppesen, P.

Jeppsen, P.

J. J. Yu, X. Y. Zheng, F. H. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppsen, “8 × 40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(3), 912–914 (2000).
[CrossRef]

Karlsson, M.

T. Torounidis, B.-E. Olsson, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Fiber-optics parametric amplifier in a loop mirror configuration,” IEEE Photon. Technol. Lett. 17(2), 321–323 (2005).
[CrossRef]

Kuo, B. P.-P.

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

Lau, K.

K. Lau, S. H. Wang, L. Xu, C. Lu, H. Y. Tam, and P. K. A. Wai, “All-optical multicast switch employing Raman-assisted FWM in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 20(20), 1730–1732 (2008).
[CrossRef]

Liu, A. M.

Liu, F. H.

J. J. Yu, X. Y. Zheng, F. H. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppsen, “8 × 40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(3), 912–914 (2000).
[CrossRef]

Liu, J.

J. Liu, Y. K. Yeo, Y. Wang, L. Xue, D. Wang, W. Rong, L. Zhou, G. Xiao, X. Yu, and T. H. Cheng, “Pump-suppressed non-degenerate four-wave mixing in a highly nonlinear photonic crystal fiber Sagnac loop,” IEEE Photon. Technol. Lett. 20(24), 2129–2131 (2008).
[CrossRef]

Lu, C.

K. Lau, S. H. Wang, L. Xu, C. Lu, H. Y. Tam, and P. K. A. Wai, “All-optical multicast switch employing Raman-assisted FWM in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 20(20), 1730–1732 (2008).
[CrossRef]

Y. J. Wen, J. Mo, Y. Wang, and C. Lu, “Advanced data modulation techniques for WDM transmission,” IEEE Commun. Mag. 44(8), 58–65 (2006).
[CrossRef]

Lu, G.-W.

Ludwig, R.

R. Elschner, C.-A. Bunge, B. HÜttl, A. G. i Coca, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, and K. Petermann, “Impact of pump-phase modulation on FWM-based wavelength conversion of D(Q)PSK signals,” IEEE J. Sel. Top. Quantum Electron. 14(3), 666–673 (2008).
[CrossRef]

Luo, T.

Miyazaki, T.

Mo, J.

Y. J. Wen, J. Mo, Y. Wang, and C. Lu, “Advanced data modulation techniques for WDM transmission,” IEEE Commun. Mag. 44(8), 58–65 (2006).
[CrossRef]

Moores, J. D.

E. A. Swanson and J. D. Moores, “A fiber frequency shifter with broad bandwidth, high conversion efficiency, pump and pump ASE cancellation, and rapid tenability for WDM optical networks,” IEEE Photon. Technol. Lett. 6(11), 1341–1343 (1994).
[CrossRef]

Mori, K.

Morioka, T.

Mørk, J.

Myslivets, E.

Olsson, B.-E.

T. Torounidis, B.-E. Olsson, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Fiber-optics parametric amplifier in a loop mirror configuration,” IEEE Photon. Technol. Lett. 17(2), 321–323 (2005).
[CrossRef]

Oxenløwe, L.

Pan, Z.

Petermann, K.

R. Elschner, C.-A. Bunge, B. HÜttl, A. G. i Coca, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, and K. Petermann, “Impact of pump-phase modulation on FWM-based wavelength conversion of D(Q)PSK signals,” IEEE J. Sel. Top. Quantum Electron. 14(3), 666–673 (2008).
[CrossRef]

Peucheret, C.

J. J. Yu, X. Y. Zheng, F. H. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppsen, “8 × 40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(3), 912–914 (2000).
[CrossRef]

Pieper, W.

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: Semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13(10), 2099–2112 (1995).
[CrossRef]

Poulsen, H. N.

J. J. Yu, X. Y. Zheng, F. H. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppsen, “8 × 40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(3), 912–914 (2000).
[CrossRef]

Proietti, R.

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photon. Technol. Lett. 18(1), 181–183 (2006).
[CrossRef]

Radic, S.

C.-S. Brès, N. Alic, E. Myslivets, and S. Radic, “Scalable multicasting in one-pump parametric amplifier,” J. Lightwave Technol. 27(3), 356–363 (2009).
[CrossRef]

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

Rong, W.

J. Liu, Y. K. Yeo, Y. Wang, L. Xue, D. Wang, W. Rong, L. Zhou, G. Xiao, X. Yu, and T. H. Cheng, “Pump-suppressed non-degenerate four-wave mixing in a highly nonlinear photonic crystal fiber Sagnac loop,” IEEE Photon. Technol. Lett. 20(24), 2129–2131 (2008).
[CrossRef]

Rouskas, G. N.

G. N. Rouskas, “Optical layer multicast: Rationale, building blocks, and challenges,” IEEE/ACM Trans. Netw. 17(1), 60–65 (2003).

Saruwatari, M.

Schmidt-Langhorst, C.

R. Elschner, C.-A. Bunge, B. HÜttl, A. G. i Coca, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, and K. Petermann, “Impact of pump-phase modulation on FWM-based wavelength conversion of D(Q)PSK signals,” IEEE J. Sel. Top. Quantum Electron. 14(3), 666–673 (2008).
[CrossRef]

Schubert, C.

R. Elschner, C.-A. Bunge, B. HÜttl, A. G. i Coca, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, and K. Petermann, “Impact of pump-phase modulation on FWM-based wavelength conversion of D(Q)PSK signals,” IEEE J. Sel. Top. Quantum Electron. 14(3), 666–673 (2008).
[CrossRef]

Shu, C.

Shum, P.

Sunnerud, H.

T. Torounidis, B.-E. Olsson, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Fiber-optics parametric amplifier in a loop mirror configuration,” IEEE Photon. Technol. Lett. 17(2), 321–323 (2005).
[CrossRef]

Swanson, E. A.

E. A. Swanson and J. D. Moores, “A fiber frequency shifter with broad bandwidth, high conversion efficiency, pump and pump ASE cancellation, and rapid tenability for WDM optical networks,” IEEE Photon. Technol. Lett. 6(11), 1341–1343 (1994).
[CrossRef]

Tam, H. Y.

K. Lau, S. H. Wang, L. Xu, C. Lu, H. Y. Tam, and P. K. A. Wai, “All-optical multicast switch employing Raman-assisted FWM in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 20(20), 1730–1732 (2008).
[CrossRef]

Torounidis, T.

T. Torounidis, B.-E. Olsson, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Fiber-optics parametric amplifier in a loop mirror configuration,” IEEE Photon. Technol. Lett. 17(2), 321–323 (2005).
[CrossRef]

Wai, P. K. A.

K. Lau, S. H. Wang, L. Xu, C. Lu, H. Y. Tam, and P. K. A. Wai, “All-optical multicast switch employing Raman-assisted FWM in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 20(20), 1730–1732 (2008).
[CrossRef]

Wang, D.

J. Liu, Y. K. Yeo, Y. Wang, L. Xue, D. Wang, W. Rong, L. Zhou, G. Xiao, X. Yu, and T. H. Cheng, “Pump-suppressed non-degenerate four-wave mixing in a highly nonlinear photonic crystal fiber Sagnac loop,” IEEE Photon. Technol. Lett. 20(24), 2129–2131 (2008).
[CrossRef]

Wang, S. H.

K. Lau, S. H. Wang, L. Xu, C. Lu, H. Y. Tam, and P. K. A. Wai, “All-optical multicast switch employing Raman-assisted FWM in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 20(20), 1730–1732 (2008).
[CrossRef]

Wang, Y.

J. Liu, Y. K. Yeo, Y. Wang, L. Xue, D. Wang, W. Rong, L. Zhou, G. Xiao, X. Yu, and T. H. Cheng, “Pump-suppressed non-degenerate four-wave mixing in a highly nonlinear photonic crystal fiber Sagnac loop,” IEEE Photon. Technol. Lett. 20(24), 2129–2131 (2008).
[CrossRef]

Y. J. Wen, J. Mo, Y. Wang, and C. Lu, “Advanced data modulation techniques for WDM transmission,” IEEE Commun. Mag. 44(8), 58–65 (2006).
[CrossRef]

Y. Wang, C. Yu, T. Luo, L. Yan, Z. Pan, and A. E. Willner, “Tunable all-optical wavelength conversion and wavelength multicasting using orthogonally polarized fiber FWM,” J. Lightwave Technol. 23(10), 3331–3338 (2005).
[CrossRef]

Weber, H. G.

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: Semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13(10), 2099–2112 (1995).
[CrossRef]

Wen, Y. J.

Y. J. Wen, J. Mo, Y. Wang, and C. Lu, “Advanced data modulation techniques for WDM transmission,” IEEE Commun. Mag. 44(8), 58–65 (2006).
[CrossRef]

Wiberg, A. O. J.

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

Willner, A. E.

Winzer, P. J.

Wu, C.

Xiao, G.

J. Liu, Y. K. Yeo, Y. Wang, L. Xue, D. Wang, W. Rong, L. Zhou, G. Xiao, X. Yu, and T. H. Cheng, “Pump-suppressed non-degenerate four-wave mixing in a highly nonlinear photonic crystal fiber Sagnac loop,” IEEE Photon. Technol. Lett. 20(24), 2129–2131 (2008).
[CrossRef]

Xu, L.

K. Lau, S. H. Wang, L. Xu, C. Lu, H. Y. Tam, and P. K. A. Wai, “All-optical multicast switch employing Raman-assisted FWM in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 20(20), 1730–1732 (2008).
[CrossRef]

L. Xu, N. Chi, K. Yvind, L. Christiansen, L. Oxenløwe, J. Mørk, P. Jeppesen, and J. Hanberg, “7x 40 Gb/s base-rate RZ all-optical broadcasting utilizing an electroabsorption modulator,” Opt. Express 12(3), 416–420 (2004).
[CrossRef] [PubMed]

Xue, L.

J. Liu, Y. K. Yeo, Y. Wang, L. Xue, D. Wang, W. Rong, L. Zhou, G. Xiao, X. Yu, and T. H. Cheng, “Pump-suppressed non-degenerate four-wave mixing in a highly nonlinear photonic crystal fiber Sagnac loop,” IEEE Photon. Technol. Lett. 20(24), 2129–2131 (2008).
[CrossRef]

Yan, L.

Yeo, Y. K.

J. Liu, Y. K. Yeo, Y. Wang, L. Xue, D. Wang, W. Rong, L. Zhou, G. Xiao, X. Yu, and T. H. Cheng, “Pump-suppressed non-degenerate four-wave mixing in a highly nonlinear photonic crystal fiber Sagnac loop,” IEEE Photon. Technol. Lett. 20(24), 2129–2131 (2008).
[CrossRef]

Yu, C.

Yu, J.

Yu, J. J.

J. J. Yu, X. Y. Zheng, F. H. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppsen, “8 × 40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(3), 912–914 (2000).
[CrossRef]

Yu, X.

J. Liu, Y. K. Yeo, Y. Wang, L. Xue, D. Wang, W. Rong, L. Zhou, G. Xiao, X. Yu, and T. H. Cheng, “Pump-suppressed non-degenerate four-wave mixing in a highly nonlinear photonic crystal fiber Sagnac loop,” IEEE Photon. Technol. Lett. 20(24), 2129–2131 (2008).
[CrossRef]

Yvind, K.

Zhang, A.

Zhang, L.

Zheng, X. Y.

J. J. Yu, X. Y. Zheng, F. H. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppsen, “8 × 40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(3), 912–914 (2000).
[CrossRef]

Zhou, L.

J. Liu, Y. K. Yeo, Y. Wang, L. Xue, D. Wang, W. Rong, L. Zhou, G. Xiao, X. Yu, and T. H. Cheng, “Pump-suppressed non-degenerate four-wave mixing in a highly nonlinear photonic crystal fiber Sagnac loop,” IEEE Photon. Technol. Lett. 20(24), 2129–2131 (2008).
[CrossRef]

Zhou, X.

IEEE Commun. Mag. (1)

Y. J. Wen, J. Mo, Y. Wang, and C. Lu, “Advanced data modulation techniques for WDM transmission,” IEEE Commun. Mag. 44(8), 58–65 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Elschner, C.-A. Bunge, B. HÜttl, A. G. i Coca, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, and K. Petermann, “Impact of pump-phase modulation on FWM-based wavelength conversion of D(Q)PSK signals,” IEEE J. Sel. Top. Quantum Electron. 14(3), 666–673 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photon. Technol. Lett. 18(1), 181–183 (2006).
[CrossRef]

J. J. Yu, X. Y. Zheng, F. H. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppsen, “8 × 40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(3), 912–914 (2000).
[CrossRef]

K. Lau, S. H. Wang, L. Xu, C. Lu, H. Y. Tam, and P. K. A. Wai, “All-optical multicast switch employing Raman-assisted FWM in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 20(20), 1730–1732 (2008).
[CrossRef]

E. A. Swanson and J. D. Moores, “A fiber frequency shifter with broad bandwidth, high conversion efficiency, pump and pump ASE cancellation, and rapid tenability for WDM optical networks,” IEEE Photon. Technol. Lett. 6(11), 1341–1343 (1994).
[CrossRef]

J. Liu, Y. K. Yeo, Y. Wang, L. Xue, D. Wang, W. Rong, L. Zhou, G. Xiao, X. Yu, and T. H. Cheng, “Pump-suppressed non-degenerate four-wave mixing in a highly nonlinear photonic crystal fiber Sagnac loop,” IEEE Photon. Technol. Lett. 20(24), 2129–2131 (2008).
[CrossRef]

T. Torounidis, B.-E. Olsson, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Fiber-optics parametric amplifier in a loop mirror configuration,” IEEE Photon. Technol. Lett. 17(2), 321–323 (2005).
[CrossRef]

IEEE/ACM Trans. Netw. (1)

G. N. Rouskas, “Optical layer multicast: Rationale, building blocks, and challenges,” IEEE/ACM Trans. Netw. 17(1), 60–65 (2003).

J. Lightwave Technol. (7)

Opt. Express (3)

Opt. Lett. (2)

Other (5)

G. P. Agrawal, The Nonlinear Fiber Optics, 4th edition. (Academic, 2007), pp. 329–363.

M. Takahashi, K. Mukasa, and T. Yagi, “Full C-L band tunable wavelength conversion by zero dispersion and zero dispersion slope HNLF,” in Proceedings of ECOC 2009, Vienna, Austria, Sept. 2009, Paper P1.08.

C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive all optical wavelength multicasting by self phase-modulation in a photonic-crystal fiber,” in Proceedings of CLEO2006, Long Beach, CA, May 2006, Paper CTuD4.

N. Yan, H.-D. Jung, I. T. Monroy, H. D. Waardt, and T. Koonen, “All-optical multi-wavelength conversion with negative power penalty by a commercial SOA-MZI for WDM wavelength multicast,” in Proceedings of OFC 2007, Anaheim, CA, Mar. 2007, Paper JWA36.

K. K. Y. Wong, G. W. Lu, K. C. Lau, P. K. A. Wai, and L. K. Chen, “All-optical wavelength conversion and multicasting by cross-gain modulation in a single-stage fiber optical parametric amplifier,” in Proceedings of OFC 2007, Anaheim, CA, Mar. 2007, Paper OTuI4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Operation principle of the proposed wavelength multicasting technique using Sagnac loop configuration. HNLF: highly nonlinear fiber. PC: polarization controller. CIR: circulator.

Fig. 2
Fig. 2

Experimental setup. FL: fixed wavelength laser. CIR: circulator. OSA: optical spectrum analyzer. IM: intensity modulator. PM: phase modulator. PC: polarization controller. HNLF: highly nonlinear fiber. OC: optical coupler. EDFA: erbium doped fiber amplifier. PRBS: pseudo-random bit sequence. TF: tunable filter. DI: delay interferometer. SMF: single mode fiber.

Fig. 3
Fig. 3

(a). Optical spectra at port 3 of CIR 1. (b). Optical spectra at port 3 of CIR 2. (c). Optical spectra of the non-loop configuration (at point B after passing through the HNLF).

Fig. 4
Fig. 4

BER curves of the BTB signal and the multicast channels and their corresponding eye diagrams. (a) and (c) for OOK signals. (b) and (d) for DPSK signals. L: Loop configuration. NL: Non-Loop configuration. Ch: channel.

Fig. 5
Fig. 5

(a). Optical spectra at port 3 of CIR 1. (b). Optical spectra at port 3 of CIR 2. (c). Optical spectra of the non-loop configuration (at point B after passing through the HNLF).

Fig. 6
Fig. 6

BER curves of the BTB signal and the multicast channels and their corresponding eye diagrams. (a) and (c) for OOK signals. (b) and (d) for DPSK signals. L: Loop configuration. NL: Non-Loop configuration. Ch: channel. OL: overlapped.

Tables (3)

Tables Icon

Table 1 Phase relationship of all the FWM waves and their corresponding output port.

Tables Icon

Table 2 Performance comparison between the loop (L) and non-loop (NL) structures (2 Pump)

Tables Icon

Table 3 Performance comparison between the loop (L) and non-loop (NL) structures with overlapped channels existing (3 pumps)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ef3=(η/8)1/2EP12ES*exp[i(ωft+ϕf)],
Ef4=i(η/8)1/2EP12ES*exp[i(ωft+ϕf)],
P1=|Ef3iEf4|22=0,
P2=|iEf3+Ef4|22=PFWM,

Metrics