Abstract

We have investigated the optical properties of the polymer-stabilized cholesteric liquid crystal (CLC). It was observed that the reflectance was decreased and the transmittance was increased with the increase of the applied voltage. Based on this property, a polarization independent two-way variable optical attenuator (VOA) has been demonstrated by sandwiching a λ/2 film between two left handed polymer-stabilized CLC films. Different from a conventional VOA, the VOA based on our developed polymer-stabilized CLC can continuously change the optical intensity in both the reflection and transmission directions by applying voltage on it. This unique property will allow it to be widely used in many applications, such as optical communications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
    [CrossRef]
  2. I. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16 (2003).
    [CrossRef]
  3. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353 (2003).
    [CrossRef]
  4. Y. D. Ma, and B. G. Wu, “Methods of manufacturing multi-color liquid crystal displays using in situ mixing techniques,” US patent 5,949,513 (1999).
  5. J. L. Davis, “Optical waveguide using cholesteric liquid crystal polymer,” US patent 6043861, (2000).
  6. T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741 (2002).
    [CrossRef]
  7. Y. H. Huang, Y. Zhou, and S. T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
    [CrossRef]
  8. M. H. Lu, “Bistable reflective cholesteric liquid crystal display,” J. Appl. Phys. 81(3), 1063 (1997).
    [CrossRef]
  9. F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
    [CrossRef]

2006

Y. H. Huang, Y. Zhou, and S. T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[CrossRef]

2005

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

2004

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

2003

I. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16 (2003).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353 (2003).
[CrossRef]

2002

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741 (2002).
[CrossRef]

1997

M. H. Lu, “Bistable reflective cholesteric liquid crystal display,” J. Appl. Phys. 81(3), 1063 (1997).
[CrossRef]

Barberi, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353 (2003).
[CrossRef]

Bartolino, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353 (2003).
[CrossRef]

Chanishvili, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353 (2003).
[CrossRef]

Chilaya, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353 (2003).
[CrossRef]

Cipparrone, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353 (2003).
[CrossRef]

Coles, H. J.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

Du, F.

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Ford, A. D.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

Funamoto, K.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741 (2002).
[CrossRef]

Furumi, I. S.

I. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16 (2003).
[CrossRef]

Gauza, S.

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Huang, Y. H.

Y. H. Huang, Y. Zhou, and S. T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[CrossRef]

Lu, M. H.

M. H. Lu, “Bistable reflective cholesteric liquid crystal display,” J. Appl. Phys. 81(3), 1063 (1997).
[CrossRef]

Lu, Y. Q.

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Mashiko, S.

I. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16 (2003).
[CrossRef]

Matsui, T.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741 (2002).
[CrossRef]

Mazzulla, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353 (2003).
[CrossRef]

Morris, S. M.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

Oriol, L.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353 (2003).
[CrossRef]

Otomo, A.

I. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16 (2003).
[CrossRef]

Ozaki, M.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741 (2002).
[CrossRef]

Ozaki, R.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741 (2002).
[CrossRef]

Petriashvili, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353 (2003).
[CrossRef]

Pivnenko, M. N.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

Ren, H. W.

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Wu, S. T.

Y. H. Huang, Y. Zhou, and S. T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[CrossRef]

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Yokoyama, S.

I. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16 (2003).
[CrossRef]

Yoshino, K.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741 (2002).
[CrossRef]

Zhou, Y.

Y. H. Huang, Y. Zhou, and S. T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[CrossRef]

Appl. Phys. Lett.

I. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16 (2003).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353 (2003).
[CrossRef]

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741 (2002).
[CrossRef]

Y. H. Huang, Y. Zhou, and S. T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[CrossRef]

J. Appl. Phys.

M. H. Lu, “Bistable reflective cholesteric liquid crystal display,” J. Appl. Phys. 81(3), 1063 (1997).
[CrossRef]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Other

Y. D. Ma, and B. G. Wu, “Methods of manufacturing multi-color liquid crystal displays using in situ mixing techniques,” US patent 5,949,513 (1999).

J. L. Davis, “Optical waveguide using cholesteric liquid crystal polymer,” US patent 6043861, (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Reflectance (a) and transmittance (b) spectra of the CLC sample at different applied voltages

Fig. 3
Fig. 3

The schematic configuration of the VOA

Fig. 4
Fig. 4

Schematic diagram of the light propagation inside the sample

Fig. 5
Fig. 5

(a) Reflectance spectra of the VOA at different applied voltages, (b) the reflectance as a function of the applied voltage.

Fig. 6
Fig. 6

(a) Transmittance spectra of the VOA at different applied voltages, (b) the transmittance as a function of the applied voltage.

Fig. 7
Fig. 7

Response time of the VOA when the applied voltage is 120 V

Metrics