Abstract

We propose and demonstrate error-free conversion of a 40 Gbit/s optical time division multiplexed signal to 4 × 10 Gbit/s wavelength division multiplexed channels based on cascaded second harmonic and difference frequency generation in a periodically poled lithium niobate waveguide. The technique relies on the generation of spectrally (and temporally) flat linearly chirped pulses which are then optically switched with short data pulses in the nonlinear waveguide. Error-free operation was obtained for all channels with a power penalty below 2dB.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Willner, “All-optical signal processing in next-generation communication systems,” presented at the Conference on Optical Fiber Communication (OFC), San Diego, CA, 24–28 Feb. 2008.
  2. K. Uchiyama and T. Morioka, “All-optical time-division demultiplexing experiment with simultaneous output of all constituent channels from 100Gbit/s OTDM signal,” Electron. Lett. 37(10), 642–643 (2001).
    [CrossRef]
  3. D. Norte and A. E. Willner, “All-optical data format conversions and reconversions between the wavelength and time domains for dynamically reconfigurable WDM networks,” J. Lightwave Technol. 14(6), 1170–1182 (1996).
    [CrossRef]
  4. P. J. Almeida, P. Petropoulos, F. Parmigiani, M. Ibsen, and D. Richardson, “OTDM add-drop multiplexer based on time-frequency signal processing,” J. Lightwave Technol. 24(7), 2720–2732 (2006).
    [CrossRef]
  5. H. Sotobayashi, W. Chujo, and K.-I. Kitayama, “Photonic gateway: TDM-to-WDM-to-TDM conversion and reconversion at 40 Gbit/s (4 channels × 10 Gbits/s),” J. Opt. Soc. Am. B 19(11), 2810–2816 (2002).
    [CrossRef]
  6. H. Sotobayashi, W. Chujo, and T. Ozeki, “80Gbit/s simultaneous photonic demultiplexing based on OTDM-to-WDM conversion by four wave mixing with supercontinuum light source,” Electron. Lett. 37(10), 640–642 (2001).
    [CrossRef]
  7. P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. Richardson, “All-optical packet compression based on time-to- wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
    [CrossRef]
  8. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
    [CrossRef]
  9. K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
    [CrossRef]
  10. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
    [CrossRef]
  11. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
    [CrossRef]
  12. J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
    [CrossRef]
  13. Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
    [CrossRef]
  14. K. J. Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. Richardson, “Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 17(22), 20393–20400 (2009).
    [CrossRef] [PubMed]
  15. K. Gallo, J. Prawiharjo, F. Parmigiani, P. Almeida, P. Petropoulos, and D. Richardson, “Processing ultrafast optical signals in broadband telecom systems by means of cascaded quadratic nonlinearities,” presented at the 8th International Conference on Transparent Optical Networks (ICTON), Nottingham, UK, 18–22 Jun. 2006.
  16. T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994).
    [CrossRef]
  17. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [CrossRef]
  18. K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008).
    [CrossRef] [PubMed]
  19. K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Full characterization of low-power picosecond pulses from a gain-switched diode laser using electro-optic modulation-based linear FROG,” IEEE Photon. Technol. Lett. 20(7), 505–507 (2008).
    [CrossRef]

2009 (2)

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

K. J. Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. Richardson, “Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 17(22), 20393–20400 (2009).
[CrossRef] [PubMed]

2008 (2)

K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008).
[CrossRef] [PubMed]

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Full characterization of low-power picosecond pulses from a gain-switched diode laser using electro-optic modulation-based linear FROG,” IEEE Photon. Technol. Lett. 20(7), 505–507 (2008).
[CrossRef]

2007 (2)

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

2006 (2)

2004 (1)

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. Richardson, “All-optical packet compression based on time-to- wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
[CrossRef]

2002 (1)

2001 (2)

H. Sotobayashi, W. Chujo, and T. Ozeki, “80Gbit/s simultaneous photonic demultiplexing based on OTDM-to-WDM conversion by four wave mixing with supercontinuum light source,” Electron. Lett. 37(10), 640–642 (2001).
[CrossRef]

K. Uchiyama and T. Morioka, “All-optical time-division demultiplexing experiment with simultaneous output of all constituent channels from 100Gbit/s OTDM signal,” Electron. Lett. 37(10), 642–643 (2001).
[CrossRef]

1999 (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

1997 (2)

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
[CrossRef]

1996 (1)

D. Norte and A. E. Willner, “All-optical data format conversions and reconversions between the wavelength and time domains for dynamically reconfigurable WDM networks,” J. Lightwave Technol. 14(6), 1170–1182 (1996).
[CrossRef]

1994 (1)

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994).
[CrossRef]

Almeida, P. J.

P. J. Almeida, P. Petropoulos, F. Parmigiani, M. Ibsen, and D. Richardson, “OTDM add-drop multiplexer based on time-frequency signal processing,” J. Lightwave Technol. 24(7), 2720–2732 (2006).
[CrossRef]

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. Richardson, “All-optical packet compression based on time-to- wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
[CrossRef]

Assanto, G.

K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008).
[CrossRef] [PubMed]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Chujo, W.

H. Sotobayashi, W. Chujo, and K.-I. Kitayama, “Photonic gateway: TDM-to-WDM-to-TDM conversion and reconversion at 40 Gbit/s (4 channels × 10 Gbits/s),” J. Opt. Soc. Am. B 19(11), 2810–2816 (2002).
[CrossRef]

H. Sotobayashi, W. Chujo, and T. Ozeki, “80Gbit/s simultaneous photonic demultiplexing based on OTDM-to-WDM conversion by four wave mixing with supercontinuum light source,” Electron. Lett. 37(10), 640–642 (2001).
[CrossRef]

Fejer, M. M.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Gaeta, A. L.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Gallo, K.

K. J. Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. Richardson, “Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 17(22), 20393–20400 (2009).
[CrossRef] [PubMed]

K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008).
[CrossRef] [PubMed]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Giltrelli, M.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

Huang, D.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

Ibsen, M.

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Full characterization of low-power picosecond pulses from a gain-switched diode laser using electro-optic modulation-based linear FROG,” IEEE Photon. Technol. Lett. 20(7), 505–507 (2008).
[CrossRef]

P. J. Almeida, P. Petropoulos, F. Parmigiani, M. Ibsen, and D. Richardson, “OTDM add-drop multiplexer based on time-frequency signal processing,” J. Lightwave Technol. 24(7), 2720–2732 (2006).
[CrossRef]

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. Richardson, “All-optical packet compression based on time-to- wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
[CrossRef]

Jundt, D. H.

Kakande, J.

Kawanishi, S.

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994).
[CrossRef]

Kitayama, K.-I.

Kumar, S.

Langrock, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[CrossRef]

Lee, K. J.

Liu, S.

Malinowski, A.

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Full characterization of low-power picosecond pulses from a gain-switched diode laser using electro-optic modulation-based linear FROG,” IEEE Photon. Technol. Lett. 20(7), 505–507 (2008).
[CrossRef]

McGeehan, J. E.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[CrossRef]

Morioka, T.

K. Uchiyama and T. Morioka, “All-optical time-division demultiplexing experiment with simultaneous output of all constituent channels from 100Gbit/s OTDM signal,” Electron. Lett. 37(10), 642–643 (2001).
[CrossRef]

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994).
[CrossRef]

Norte, D.

D. Norte and A. E. Willner, “All-optical data format conversions and reconversions between the wavelength and time domains for dynamically reconfigurable WDM networks,” J. Lightwave Technol. 14(6), 1170–1182 (1996).
[CrossRef]

Ozeki, T.

H. Sotobayashi, W. Chujo, and T. Ozeki, “80Gbit/s simultaneous photonic demultiplexing based on OTDM-to-WDM conversion by four wave mixing with supercontinuum light source,” Electron. Lett. 37(10), 640–642 (2001).
[CrossRef]

Parmigiani, F.

Pasquazi, A.

K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008).
[CrossRef] [PubMed]

Petropoulos, P.

K. J. Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. Richardson, “Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 17(22), 20393–20400 (2009).
[CrossRef] [PubMed]

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Full characterization of low-power picosecond pulses from a gain-switched diode laser using electro-optic modulation-based linear FROG,” IEEE Photon. Technol. Lett. 20(7), 505–507 (2008).
[CrossRef]

P. J. Almeida, P. Petropoulos, F. Parmigiani, M. Ibsen, and D. Richardson, “OTDM add-drop multiplexer based on time-frequency signal processing,” J. Lightwave Technol. 24(7), 2720–2732 (2006).
[CrossRef]

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. Richardson, “All-optical packet compression based on time-to- wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
[CrossRef]

Richardson, D.

Richardson, D. J.

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Full characterization of low-power picosecond pulses from a gain-switched diode laser using electro-optic modulation-based linear FROG,” IEEE Photon. Technol. Lett. 20(7), 505–507 (2008).
[CrossRef]

Roelens, M. A. F.

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Full characterization of low-power picosecond pulses from a gain-switched diode laser using electro-optic modulation-based linear FROG,” IEEE Photon. Technol. Lett. 20(7), 505–507 (2008).
[CrossRef]

Roussev, R.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Saruwatari, M.

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994).
[CrossRef]

Sharping, J. E.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Sotobayashi, H.

H. Sotobayashi, W. Chujo, and K.-I. Kitayama, “Photonic gateway: TDM-to-WDM-to-TDM conversion and reconversion at 40 Gbit/s (4 channels × 10 Gbits/s),” J. Opt. Soc. Am. B 19(11), 2810–2816 (2002).
[CrossRef]

H. Sotobayashi, W. Chujo, and T. Ozeki, “80Gbit/s simultaneous photonic demultiplexing based on OTDM-to-WDM conversion by four wave mixing with supercontinuum light source,” Electron. Lett. 37(10), 640–642 (2001).
[CrossRef]

Stegeman, G. I.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Stivala, S.

K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008).
[CrossRef] [PubMed]

Sun, J.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

Takara, H.

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994).
[CrossRef]

Thomsen, B. C.

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. Richardson, “All-optical packet compression based on time-to- wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
[CrossRef]

Uchiyama, K.

K. Uchiyama and T. Morioka, “All-optical time-division demultiplexing experiment with simultaneous output of all constituent channels from 100Gbit/s OTDM signal,” Electron. Lett. 37(10), 642–643 (2001).
[CrossRef]

Vu, K. T.

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Full characterization of low-power picosecond pulses from a gain-switched diode laser using electro-optic modulation-based linear FROG,” IEEE Photon. Technol. Lett. 20(7), 505–507 (2008).
[CrossRef]

Wang, J.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

Wang, Y.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Willner, A. E.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[CrossRef]

D. Norte and A. E. Willner, “All-optical data format conversions and reconversions between the wavelength and time domains for dynamically reconfigurable WDM networks,” J. Lightwave Technol. 14(6), 1170–1182 (1996).
[CrossRef]

Yan, L.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Yu, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Zhang, X.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Electron. Lett. (4)

H. Sotobayashi, W. Chujo, and T. Ozeki, “80Gbit/s simultaneous photonic demultiplexing based on OTDM-to-WDM conversion by four wave mixing with supercontinuum light source,” Electron. Lett. 37(10), 640–642 (2001).
[CrossRef]

K. Uchiyama and T. Morioka, “All-optical time-division demultiplexing experiment with simultaneous output of all constituent channels from 100Gbit/s OTDM signal,” Electron. Lett. 37(10), 642–643 (2001).
[CrossRef]

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett. 30(23), 1959–1960 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. Richardson, “All-optical packet compression based on time-to- wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Full characterization of low-power picosecond pulses from a gain-switched diode laser using electro-optic modulation-based linear FROG,” IEEE Photon. Technol. Lett. 20(7), 505–507 (2008).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

K. Gallo, A. Pasquazi, S. Stivala, and G. Assanto, “Parametric solitons in two-dimensional lattices of purely nonlinear origin,” Phys. Rev. Lett. 100(5), 053901 (2008).
[CrossRef] [PubMed]

Other (2)

A. E. Willner, “All-optical signal processing in next-generation communication systems,” presented at the Conference on Optical Fiber Communication (OFC), San Diego, CA, 24–28 Feb. 2008.

K. Gallo, J. Prawiharjo, F. Parmigiani, P. Almeida, P. Petropoulos, and D. Richardson, “Processing ultrafast optical signals in broadband telecom systems by means of cascaded quadratic nonlinearities,” presented at the 8th International Conference on Transparent Optical Networks (ICTON), Nottingham, UK, 18–22 Jun. 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the OTDM to mixed TDM-WDM conversion based on cSHG/DFG in a PPLN waveguide.

Fig. 2
Fig. 2

(a) Experimental setup used to convert the OTDM to mixed TDM-WDM signal. MOD: modulator, EDFA: erbium-doped fiber amplifier, PC: polarization controller, DCA: digital communication analyzer (detection bandwidth of 32GHz). (b) Eye diagram of the 40-Gbit/s data signal. (c) Temporal trace of linearly-chirped rectangular pulse (for illustrative purposes, when taking this measurement the repetition rate was gated down to 5 GHz). (d) Spectral trace after PPLN. (e) Eye diagram and spectral trace of converted mixed TDM-WDM signal.

Fig. 3
Fig. 3

Measured FROG traces for (a) the linearly chirped pulse and (b) the converted mixed TDM-WDM signals.

Fig. 4
Fig. 4

(a) Filtered and amplified spectra and corresponding eye diagrams of each switched tributary channel. (b) BER curves for each tributary channel and the back-to-back signal.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ainz+δv1Aint=iΓ1AshAinexp(iΔβ1z)Acpz+δv2Acpt=iΓ2AshAoutexp(iΔβ2z)Aoutz+δv3Aoutt=iΓ3AshAcpexp(iΔβ2z)Ashz+δv4Asht=iΓ1Ain2exp(iΔβ1z)iΓ4AcpAoutexp(iΔβ2z)

Metrics