Abstract

A compact real-time fluorescence lifetime imaging microscopy (FLIM) system based on an array of low dark count 0.13μm CMOS single-photon avalanche diodes (SPADs) is demonstrated. Fast background-insensitive fluorescence lifetime determination is achieved by use of a recently proposed algorithm called ‘Integration for Extraction Method’ (IEM) [J. Opt. Soc. Am. A 25, 1190 (2008)]. Here, IEM is modified for a wider resolvability range and implemented on the FPGA of the new SPAD array imager. We experimentally demonstrate that the dynamic range and accuracy of calculated lifetimes of this new camera is suitable for widefield FLIM applications by imaging a variety of test samples, including various standard fluorophores covering a lifetime range from 1.6ns to 16ns, microfluidic mixing of fluorophore solutions, and living fungal spores of Neurospora Crassa. The calculated lifetimes are in a good agreement with literature values. Real-time fluorescence lifetime imaging is also achieved, by performing parallel 32 × 16 lifetime calculations, realizing a compact and low-cost FLIM camera and promising for bigger detector arrays.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. Kluwer (Academic/Plenum Publishers, New York, 2006).
  2. P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9(2), 48–52 (1999).
    [CrossRef] [PubMed]
  3. M. Gersbach, D. L. Boiko, C. Niclass, C. C. Petersen, and E. Charbon, “Fast-fluorescence dynamics in nonratiometric calcium indicators,” Opt. Lett. 34(3), 362–364 (2009).
    [CrossRef] [PubMed]
  4. A. Draaijer, R. Sanders, and H. C. Gerritsen, “Fluorescence lifetime imaging, a new tool in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. P. Pawley, Ed., Plenum Press, 491–505 (1995).
  5. M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
    [CrossRef]
  6. R. K. Henderson, J. Richardson, and L. Grant, “Reduction of band-to-band tunneling in deep-submicron CMOS single photon avalanche photodiodes,” presented at the International Image Sensor Workshop (IISW 2009), Bergen, Norway, 26–28 June 2009. http://www.imagesensors.org/Past%20Workshops/2009%20Workshop/2009%20Papers/022_paper_henderson_univ_edinburgh_spad_final.pdf .
  7. J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
    [CrossRef]
  8. B. Rae, C. Griffin, K. Muir, J. Girkin, E. Gu, D. Renshaw, E. Charbon, M. Dawson, and R. Henderson, “A microsystem for time-resolved fluorescence analysis using CMOS single-photon avalanche diodes and micro-LEDs,” in Proceedings of IEEE Conference on Solid State Circuits (IEEE, New York, 2008), pp. 166–167. http://infoscience.epfl.ch/record/125270/files/isscc08_rh_pub.pdf .
  9. J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. Henderson, “A 32x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” in Proceedings of IEEE Conference on Custom Integrated Circuits (IEEE, New York, 2009), pp. 77–80. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5280890 .
  10. P. Hall and B. Selinger, “Better estimates of exponential decay parameters,” J. Phys. Chem. 85(20), 2941–2946 (1981).
    [CrossRef]
  11. J. A. Jo, Q. Fang, and L. Marcu, “Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the Laguerre expansion technique,” IEEE J. Sel. Top. Quantum Electron. 11(4), 835–845 (2005).
    [CrossRef]
  12. S. W. Magennis, E. M. Graham, and A. C. Jones, “Quantitative spatial mapping of mixing in microfluidic systems,” Angew. Chem. Int. Ed. 44(40), 6512–6516 (2005).
    [CrossRef]
  13. A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D Appl. Phys. 36(14), 1655–1662 (2003).
    [CrossRef]
  14. D.-U. Li, E. Bonnist, D. Renshaw, and R. Henderson, “On-chip time-correlated fluorescence lifetime extraction algorithms and error analysis,” J. Opt. Soc. Am. A 25(5), 1190–1198 (2008).
    [CrossRef]
  15. D.-U. Li, R. Walker, J. Richardson, B. Rae, A. Buts, D. Renshaw, and R. Henderson, “Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm,” J. Opt. Soc. Am. A 26(4), 804–814 (2009).
    [CrossRef]
  16. R. M. Ballew and J. N. Demas, “An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays,” Anal. Chem. 61(1), 30–33 (1989).
    [CrossRef]
  17. D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
    [CrossRef]
  18. D.-U. Li, B. Rae, E. Bonnist, D. Renshaw, and R. Henderson, “On-chip fluorescence lifetime extraction using synchronous gating scheme-Theoretical error analysis and practical implementation,” in Proceedings of Int. Conf. Bio-inspired Systems and Signal processing, INSTICC, (Academic, Lisbon, Portugal, 2008), pp. 171–176. http://www.biosignals.biostec.org/Abstracts/2008/BIOSIGNALS_2008_Abstracts.htm .
  19. C. Moore, S. P. Chan, J. N. Demas, and B. A. DeGraff, “Comparison of methods for rapid evaluation of lifetimes of exponential decays,” Appl. Spectrosc. 58(5), 603–607 (2004).
    [CrossRef] [PubMed]
  20. W. Trabesinger, C. G. Hübner, B. Hecht, and T. P. Wild, “Continuous real-time measurement of fluorescence lifetime,” Rev. Sci. Instrum. 73(8), 3122–3124 (2002).
    [CrossRef]
  21. H. P. Good, A. J. Kallir, and U. P. Wild, “Comparison of fluorescence lifetime fitting techniques,” J. Phys. Chem. 88(22), 5435–5441 (1984).
    [CrossRef]
  22. P. C. Schneider and R. M. Clegg, “Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications,” Rev. Sci. Instrum. 68(11), 4107–4119 (1997).
    [CrossRef]
  23. J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
    [CrossRef]
  24. J. Philips and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J. Opt. Soc. Am. A 20(2), 368–379 (2003).
    [CrossRef]
  25. M. J. Booth and T. Wilson, “Low-cost, frequency-domain, fluorescence lifetime confocal microscopy,” J. Microsc. 214(1), 36–42 (2004).
    [CrossRef] [PubMed]
  26. A. D. Elder, S. M. Matthews, J. Swartling, K. Yunus, J. H. Frank, C. M. Brennan, A. C. Fisher, and C. F. Kaminski, “Application of frequency-domain Fluorescence Lifetime Imaging Microscopy as a quantitative analytical tool for microfluidic devices,” Opt. Express 14(12), 5456–5467 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-12-5456 .
    [CrossRef] [PubMed]
  27. R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech. 71(3), 201–213 (2008).
    [CrossRef]
  28. P. Alfke, Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence Generators, XAPP052, Application Note, Xilinx, Inc., San Jose, CA 95124–3400 (1996).
  29. S. Donati, G. Martini, and M. Norgia, “Microconcentrators to recover fill-factor in image photodetectors with pixel on-board processing circuits,” Opt. Express 15(26), 18066–18075 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-26-18066 .
    [CrossRef] [PubMed]

2009 (4)

M. Gersbach, D. L. Boiko, C. Niclass, C. C. Petersen, and E. Charbon, “Fast-fluorescence dynamics in nonratiometric calcium indicators,” Opt. Lett. 34(3), 362–364 (2009).
[CrossRef] [PubMed]

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

D.-U. Li, R. Walker, J. Richardson, B. Rae, A. Buts, D. Renshaw, and R. Henderson, “Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm,” J. Opt. Soc. Am. A 26(4), 804–814 (2009).
[CrossRef]

2008 (2)

D.-U. Li, E. Bonnist, D. Renshaw, and R. Henderson, “On-chip time-correlated fluorescence lifetime extraction algorithms and error analysis,” J. Opt. Soc. Am. A 25(5), 1190–1198 (2008).
[CrossRef]

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech. 71(3), 201–213 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (2)

J. A. Jo, Q. Fang, and L. Marcu, “Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the Laguerre expansion technique,” IEEE J. Sel. Top. Quantum Electron. 11(4), 835–845 (2005).
[CrossRef]

S. W. Magennis, E. M. Graham, and A. C. Jones, “Quantitative spatial mapping of mixing in microfluidic systems,” Angew. Chem. Int. Ed. 44(40), 6512–6516 (2005).
[CrossRef]

2004 (3)

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

C. Moore, S. P. Chan, J. N. Demas, and B. A. DeGraff, “Comparison of methods for rapid evaluation of lifetimes of exponential decays,” Appl. Spectrosc. 58(5), 603–607 (2004).
[CrossRef] [PubMed]

M. J. Booth and T. Wilson, “Low-cost, frequency-domain, fluorescence lifetime confocal microscopy,” J. Microsc. 214(1), 36–42 (2004).
[CrossRef] [PubMed]

2003 (2)

J. Philips and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J. Opt. Soc. Am. A 20(2), 368–379 (2003).
[CrossRef]

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D Appl. Phys. 36(14), 1655–1662 (2003).
[CrossRef]

2002 (1)

W. Trabesinger, C. G. Hübner, B. Hecht, and T. P. Wild, “Continuous real-time measurement of fluorescence lifetime,” Rev. Sci. Instrum. 73(8), 3122–3124 (2002).
[CrossRef]

1999 (2)

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[CrossRef]

P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9(2), 48–52 (1999).
[CrossRef] [PubMed]

1997 (1)

P. C. Schneider and R. M. Clegg, “Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications,” Rev. Sci. Instrum. 68(11), 4107–4119 (1997).
[CrossRef]

1989 (1)

R. M. Ballew and J. N. Demas, “An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays,” Anal. Chem. 61(1), 30–33 (1989).
[CrossRef]

1984 (1)

H. P. Good, A. J. Kallir, and U. P. Wild, “Comparison of fluorescence lifetime fitting techniques,” J. Phys. Chem. 88(22), 5435–5441 (1984).
[CrossRef]

1981 (1)

P. Hall and B. Selinger, “Better estimates of exponential decay parameters,” J. Phys. Chem. 85(20), 2941–2946 (1981).
[CrossRef]

Agronskaia, A. V.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D Appl. Phys. 36(14), 1655–1662 (2003).
[CrossRef]

Ballew, R. M.

R. M. Ballew and J. N. Demas, “An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays,” Anal. Chem. 61(1), 30–33 (1989).
[CrossRef]

Bastiaens, P. I. H.

P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9(2), 48–52 (1999).
[CrossRef] [PubMed]

Boiko, D. L.

Bonnist, E.

Booth, M. J.

M. J. Booth and T. Wilson, “Low-cost, frequency-domain, fluorescence lifetime confocal microscopy,” J. Microsc. 214(1), 36–42 (2004).
[CrossRef] [PubMed]

Brennan, C. M.

Buts, A.

Carlsson, K.

Chan, S. P.

Charbon, E.

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

M. Gersbach, D. L. Boiko, C. Niclass, C. C. Petersen, and E. Charbon, “Fast-fluorescence dynamics in nonratiometric calcium indicators,” Opt. Lett. 34(3), 362–364 (2009).
[CrossRef] [PubMed]

Clegg, R. M.

P. C. Schneider and R. M. Clegg, “Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications,” Rev. Sci. Instrum. 68(11), 4107–4119 (1997).
[CrossRef]

Colyer, R. A.

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech. 71(3), 201–213 (2008).
[CrossRef]

DeGraff, B. A.

Demas, J. N.

C. Moore, S. P. Chan, J. N. Demas, and B. A. DeGraff, “Comparison of methods for rapid evaluation of lifetimes of exponential decays,” Appl. Spectrosc. 58(5), 603–607 (2004).
[CrossRef] [PubMed]

R. M. Ballew and J. N. Demas, “An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays,” Anal. Chem. 61(1), 30–33 (1989).
[CrossRef]

Donati, S.

Dunsby, C.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

Dymoke-Bradshaw, A.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

Elder, A. D.

Elson, D. S.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

Fang, Q.

J. A. Jo, Q. Fang, and L. Marcu, “Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the Laguerre expansion technique,” IEEE J. Sel. Top. Quantum Electron. 11(4), 835–845 (2005).
[CrossRef]

Fisher, A. C.

Frank, J. H.

French, P. M. W.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

Galletly, N.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

Gerritsen, H. C.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D Appl. Phys. 36(14), 1655–1662 (2003).
[CrossRef]

Gersbach, M.

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

M. Gersbach, D. L. Boiko, C. Niclass, C. C. Petersen, and E. Charbon, “Fast-fluorescence dynamics in nonratiometric calcium indicators,” Opt. Lett. 34(3), 362–364 (2009).
[CrossRef] [PubMed]

Good, H. P.

H. P. Good, A. J. Kallir, and U. P. Wild, “Comparison of fluorescence lifetime fitting techniques,” J. Phys. Chem. 88(22), 5435–5441 (1984).
[CrossRef]

Graham, E. M.

S. W. Magennis, E. M. Graham, and A. C. Jones, “Quantitative spatial mapping of mixing in microfluidic systems,” Angew. Chem. Int. Ed. 44(40), 6512–6516 (2005).
[CrossRef]

Grant, L.

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

Grant, L. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

Gratton, E.

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech. 71(3), 201–213 (2008).
[CrossRef]

Hall, P.

P. Hall and B. Selinger, “Better estimates of exponential decay parameters,” J. Phys. Chem. 85(20), 2941–2946 (1981).
[CrossRef]

Hansroul, M.

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[CrossRef]

Hardillier, S.

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

Hares, J.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

Hecht, B.

W. Trabesinger, C. G. Hübner, B. Hecht, and T. P. Wild, “Continuous real-time measurement of fluorescence lifetime,” Rev. Sci. Instrum. 73(8), 3122–3124 (2002).
[CrossRef]

Henderson, R.

Henderson, R. K.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

Hübner, C. G.

W. Trabesinger, C. G. Hübner, B. Hecht, and T. P. Wild, “Continuous real-time measurement of fluorescence lifetime,” Rev. Sci. Instrum. 73(8), 3122–3124 (2002).
[CrossRef]

Jo, J. A.

J. A. Jo, Q. Fang, and L. Marcu, “Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the Laguerre expansion technique,” IEEE J. Sel. Top. Quantum Electron. 11(4), 835–845 (2005).
[CrossRef]

Jones, A. C.

S. W. Magennis, E. M. Graham, and A. C. Jones, “Quantitative spatial mapping of mixing in microfluidic systems,” Angew. Chem. Int. Ed. 44(40), 6512–6516 (2005).
[CrossRef]

Kallir, A. J.

H. P. Good, A. J. Kallir, and U. P. Wild, “Comparison of fluorescence lifetime fitting techniques,” J. Phys. Chem. 88(22), 5435–5441 (1984).
[CrossRef]

Kaminski, C. F.

Kellett, P. A.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

Lee, C.

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech. 71(3), 201–213 (2008).
[CrossRef]

Lever, M. J.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

Li, D.-U.

Magennis, S. W.

S. W. Magennis, E. M. Graham, and A. C. Jones, “Quantitative spatial mapping of mixing in microfluidic systems,” Angew. Chem. Int. Ed. 44(40), 6512–6516 (2005).
[CrossRef]

Marcu, L.

J. A. Jo, Q. Fang, and L. Marcu, “Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the Laguerre expansion technique,” IEEE J. Sel. Top. Quantum Electron. 11(4), 835–845 (2005).
[CrossRef]

Martini, G.

Matthews, S. M.

Mazaleyrat, E.

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

McGinty, J.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

Mizeret, J.

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[CrossRef]

Moore, C.

Munro, I.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

Neil, M. A. A.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

Niclass, C.

M. Gersbach, D. L. Boiko, C. Niclass, C. C. Petersen, and E. Charbon, “Fast-fluorescence dynamics in nonratiometric calcium indicators,” Opt. Lett. 34(3), 362–364 (2009).
[CrossRef] [PubMed]

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

Norgia, M.

Petersen, C. C.

Philips, J.

Rae, B.

Renshaw, D.

Requejo-Isidro, J.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

Richardson, J.

D.-U. Li, R. Walker, J. Richardson, B. Rae, A. Buts, D. Renshaw, and R. Henderson, “Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm,” J. Opt. Soc. Am. A 26(4), 804–814 (2009).
[CrossRef]

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

Richardson, J. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

Schneider, P. C.

P. C. Schneider and R. M. Clegg, “Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications,” Rev. Sci. Instrum. 68(11), 4107–4119 (1997).
[CrossRef]

Selinger, B.

P. Hall and B. Selinger, “Better estimates of exponential decay parameters,” J. Phys. Chem. 85(20), 2941–2946 (1981).
[CrossRef]

Squire, A.

P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9(2), 48–52 (1999).
[CrossRef] [PubMed]

Stamp, G. W.

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

Stepinac, T.

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[CrossRef]

Studzinski, A.

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[CrossRef]

Swartling, J.

Tertoolen, L.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D Appl. Phys. 36(14), 1655–1662 (2003).
[CrossRef]

Trabesinger, W.

W. Trabesinger, C. G. Hübner, B. Hecht, and T. P. Wild, “Continuous real-time measurement of fluorescence lifetime,” Rev. Sci. Instrum. 73(8), 3122–3124 (2002).
[CrossRef]

van den Bergh, H.

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[CrossRef]

Wagnières, G.

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[CrossRef]

Walker, R.

Wild, T. P.

W. Trabesinger, C. G. Hübner, B. Hecht, and T. P. Wild, “Continuous real-time measurement of fluorescence lifetime,” Rev. Sci. Instrum. 73(8), 3122–3124 (2002).
[CrossRef]

Wild, U. P.

H. P. Good, A. J. Kallir, and U. P. Wild, “Comparison of fluorescence lifetime fitting techniques,” J. Phys. Chem. 88(22), 5435–5441 (1984).
[CrossRef]

Wilson, T.

M. J. Booth and T. Wilson, “Low-cost, frequency-domain, fluorescence lifetime confocal microscopy,” J. Microsc. 214(1), 36–42 (2004).
[CrossRef] [PubMed]

Yunus, K.

Anal. Chem. (1)

R. M. Ballew and J. N. Demas, “An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays,” Anal. Chem. 61(1), 30–33 (1989).
[CrossRef]

Angew. Chem. Int. Ed. (1)

S. W. Magennis, E. M. Graham, and A. C. Jones, “Quantitative spatial mapping of mixing in microfluidic systems,” Angew. Chem. Int. Ed. 44(40), 6512–6516 (2005).
[CrossRef]

Appl. Spectrosc. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Jo, Q. Fang, and L. Marcu, “Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the Laguerre expansion technique,” IEEE J. Sel. Top. Quantum Electron. 11(4), 835–845 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[CrossRef]

J. Microsc. (1)

M. J. Booth and T. Wilson, “Low-cost, frequency-domain, fluorescence lifetime confocal microscopy,” J. Microsc. 214(1), 36–42 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

J. Phys. Chem. (2)

P. Hall and B. Selinger, “Better estimates of exponential decay parameters,” J. Phys. Chem. 85(20), 2941–2946 (1981).
[CrossRef]

H. P. Good, A. J. Kallir, and U. P. Wild, “Comparison of fluorescence lifetime fitting techniques,” J. Phys. Chem. 88(22), 5435–5441 (1984).
[CrossRef]

J. Phys. D Appl. Phys. (1)

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D Appl. Phys. 36(14), 1655–1662 (2003).
[CrossRef]

Microsc. Res. Tech. (1)

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech. 71(3), 201–213 (2008).
[CrossRef]

N. J. Phys. (1)

D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” N. J. Phys. 6, 180 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Rev. Sci. Instrum. (3)

W. Trabesinger, C. G. Hübner, B. Hecht, and T. P. Wild, “Continuous real-time measurement of fluorescence lifetime,” Rev. Sci. Instrum. 73(8), 3122–3124 (2002).
[CrossRef]

P. C. Schneider and R. M. Clegg, “Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications,” Rev. Sci. Instrum. 68(11), 4107–4119 (1997).
[CrossRef]

J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70(12), 4689–4701 (1999).
[CrossRef]

Solid-State Electron. (1)

M. Gersbach, J. Richardson, E. Mazaleyrat, S. Hardillier, C. Niclass, R. Henderson, L. Grant, and E. Charbon, “A low-noise single photon detector implemented in a 130nm CMOS imaging process,” Solid-State Electron. 53(7), 803–808 (2009).
[CrossRef]

Trends Cell Biol. (1)

P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9(2), 48–52 (1999).
[CrossRef] [PubMed]

Other (7)

P. Alfke, Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence Generators, XAPP052, Application Note, Xilinx, Inc., San Jose, CA 95124–3400 (1996).

R. K. Henderson, J. Richardson, and L. Grant, “Reduction of band-to-band tunneling in deep-submicron CMOS single photon avalanche photodiodes,” presented at the International Image Sensor Workshop (IISW 2009), Bergen, Norway, 26–28 June 2009. http://www.imagesensors.org/Past%20Workshops/2009%20Workshop/2009%20Papers/022_paper_henderson_univ_edinburgh_spad_final.pdf .

B. Rae, C. Griffin, K. Muir, J. Girkin, E. Gu, D. Renshaw, E. Charbon, M. Dawson, and R. Henderson, “A microsystem for time-resolved fluorescence analysis using CMOS single-photon avalanche diodes and micro-LEDs,” in Proceedings of IEEE Conference on Solid State Circuits (IEEE, New York, 2008), pp. 166–167. http://infoscience.epfl.ch/record/125270/files/isscc08_rh_pub.pdf .

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. Henderson, “A 32x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” in Proceedings of IEEE Conference on Custom Integrated Circuits (IEEE, New York, 2009), pp. 77–80. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5280890 .

A. Draaijer, R. Sanders, and H. C. Gerritsen, “Fluorescence lifetime imaging, a new tool in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. P. Pawley, Ed., Plenum Press, 491–505 (1995).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. Kluwer (Academic/Plenum Publishers, New York, 2006).

D.-U. Li, B. Rae, E. Bonnist, D. Renshaw, and R. Henderson, “On-chip fluorescence lifetime extraction using synchronous gating scheme-Theoretical error analysis and practical implementation,” in Proceedings of Int. Conf. Bio-inspired Systems and Signal processing, INSTICC, (Academic, Lisbon, Portugal, 2008), pp. 171–176. http://www.biosignals.biostec.org/Abstracts/2008/BIOSIGNALS_2008_Abstracts.htm .

Supplementary Material (1)

» Media 1: AVI (1296 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Concept of IEM algorithm. The decay of a molecule is discretized in time and for each time slot the corresponding photon count is measured, approaching for large values of M the decay function f(t).

Fig. 2
Fig. 2

Precision and accuracy curves versus measurement window in τ for the M-bin IEM with (a) a fixed denominator (L = 10) and (b) a fixed numerator (C = 14) of Eq. (1).

Fig. 3
Fig. 3

(a) SPAD detection model and (b) IEM implementation on FPGA for a single SPAD.

Fig. 4
Fig. 4

Decay and fitted curves obtained by the HDL model and IEM for (a) τ = 200h and (b) τ = 10h.

Fig. 5
Fig. 5

(a) IEM FPGA implementation and data path (b) Imager assembly on an EPFL LASP motherboard.

Fig. 6
Fig. 6

Number of bits required to store Nc for (a) fixed accuracy mode and (b) fixed total count mode.

Fig. 7
Fig. 7

Schematic and photo of the experimental setup. A standard Nikon B2-A filter cube was used for the fluorescence imaging.

Fig. 8
Fig. 8

Microfluidic mixing of fluorophore solutions. (a) Rhodamine B in water and ethanol (both 100μM) come together at a junction at a high flow rate (50 μl/min). (b) Interface between the two streams (here 100μM Rhodamine B and 20μM Rhodamine 6G in water) dissolves as they mix along the channel. (c) Brightfield image of the microfluidic micromixer chip (Micronit Microfluidics, FC_TD26).

Fig. 9
Fig. 9

(Media 1) Interface between two streams (100μM Rhodamine B from top inlet and 20μM Rhodamine 6G in water from the bottom inlet) changes as the flow rate is varied in a T-mixer (dimensions: W400μm × H200μm). Media at 5 times the actual speed (104s in real time): Initially the flow had been stopped, the flow was then re-started at time 5s, leading to a sharp interface between 2 well distinguished streams, but start to mix again after the flow has been stopped at time 45s.

Fig. 10
Fig. 10

Images of fungal spores (Neurosporra crassa) which have been genetically modified to express GFP. Brightfield image on (a) standard CCD and (b) 32 × 16 SPAD array (c) Fluorescence intensity image (scale indicating photon count rate in kHz) and (d) Lifetime image indicating a uniform lifetime of about 4ns throughout the spore. Field of view 8 μm × 16 μm.

Tables (1)

Tables Icon

Table 1 Lifetime estimates obtained from a uniform sample of Rhodamine 6G in water at a concentration of 100uM (literature lifetime τ = 4.1ns), imaged using a Nikon Plan Fluor 20x, N.A. 0.5 objective.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

τIEMhj=0M1CjNjN0NM1=Nc(N0+NM1)/2N0NM1,
N0NM1=2L, L is an integer,
{ΔτIEMτIEM=112(hτ)2,                                                           στIEMτIEM=2Nc[1+112(hτ)2](1xM)(x+xM)(1x)(1xM1)2(1+x)2,
Nc=2L1xM(1x)(1xM1)2Lhτ.
στIEMτIEM=12L/21[1+112(hτ)2](x+xM)(1xM1)(1+x)2.
Precision20log[2L/2(1+x)2x]3L (dB), 
Nc(N0+NM1)/2=2C, C is an integer .
Nc=2C+1(1xM)(1+x)(1xM1)2C,
στIEMτIEM=22C+12[1+112(hτ)2](x+xM)(1x)(1+x)(1xM1)=g(C,τ).

Metrics