Abstract

Three-dimensional (3D) micro/nano-structuring of photo-resists is systematically studied at the close-to-dielectric-breakdown irradiance. It is demonstrated that avalanche absorption is playing a major part in free electron generation and chemical bond breaking at these conditions. The steps of photo-initiation and chemical bond breaking in propagation of polymerization are altered as compared with photo-polymerization at low-irradiance and one-photon stereo-lithography. The avalanche dominates radical generation and promotion of polymerization at tight focusing and a high ~TW/cm2 irradiance. The rates of electron generation by two-photon absorption and avalanche are calculated for the experimental conditions. Simulation results are corroborated by 3D polymerization in three resists with different photo-initiators at two different wavelengths and pulse durations. The smallest feature sizes of 3D polymerized logpile structures are consistent with spectral dependencies of the two photon nonlinearities. Implications of these findings for achieving sub-100 nm resolution in 3D structuring of photo-polymers are presented.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Farsari, and B. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
    [CrossRef]
  2. J. K. Gansel, K. Justyna, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513–1515 (2009).
    [CrossRef] [PubMed]
  3. R. R. Gattass, and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–222 (2008).
    [CrossRef]
  4. T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
    [CrossRef]
  5. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
    [CrossRef] [PubMed]
  6. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving ?/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324, 910–913 (2009).
    [CrossRef] [PubMed]
  7. S. H. Park, T. W. Lim, D. Y. Yang, R. H. Kim, and K. S. Lee, “Improvement of spatial resolution in nanostereolithography using radical quencher,” Macromol. Res. 14, 559–564 (2006).
    [CrossRef]
  8. S. K. Sundaram, and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
    [CrossRef]
  9. C. A. Mack, Optical Lithography, (SPIE Field Guides, vol. FG06, SPIE Press, Bellingham, 2006).
    [CrossRef]
  10. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132–134 (1997).
    [CrossRef]
  11. R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys. 8, 1105 (1998).
  12. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28, 301–303 (2003).
    [CrossRef] [PubMed]
  13. M. Straub, and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824–1826 (2002).
    [CrossRef]
  14. S. H. Park, S. H. Lee, D.-Y. Yang, H. J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 154108 (2005).
    [CrossRef]
  15. F. Qi, Y. Li, D. Tan, H. Yang, and Q. Gong, “Polymerized nanotips via two-photon photopolymerization,” Opt. Express 15, 971–976 (2007).
    [CrossRef] [PubMed]
  16. M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area,” in Proceedings of Micromachining and Microfabrication Process Technology XIV, Proc. SPIE 7204, 72040C (2009).
  17. A. Pikulin, and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B 75, 195430 (2009).
    [CrossRef]
  18. N. Uppal, and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” J. Micro/Nanolith MEMS MOEMS 7, 043002 (2008).
    [CrossRef]
  19. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
    [CrossRef]
  20. T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
    [CrossRef]
  21. H. Xia, W.-Y. Zhang, F.-F. Wang, D. Wu, X.-W. Liu, L. L. Chen, Q.-D. Chen, Y.-G. Ma, and H.-B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett. 95, 083118 (2009).
    [CrossRef]
  22. R. W. Boyd, Nonlinear Optics (Academic Press, London, 2nd ed., 2003).
  23. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
    [CrossRef]
  24. A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008).
    [CrossRef]
  25. V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal templates for infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
    [CrossRef] [PubMed]
  26. A. E. Siegman, Lasers (University Science Books, Mill Valley, 1986).
  27. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  28. K. Kamada, “Characterization of two-photon absorption and its resonance enhancement by z-scan method,” in Proceedings of Nonlinear Optical Transmission and Multiphoton Processes in Organics II, Proc. SPIE 5516, 97–105 (2004).
  29. K. Kamada, K. Matsunaga, A. Yoshino, and K. Ohta, “Two-photon-absorption-induced accumulated thermal effect on femtosecond Z-scan experiments studied with time-resolved thermal-lens spectrometry and its simulation,” J. Opt. Soc. Am. B 20, 529–537 (2003).
    [CrossRef]
  30. R. DeSalvo, A. A. Said, D. Hagan, E.W. VanStryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n(2) in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
    [CrossRef]
  31. M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
    [CrossRef]
  32. N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008).
    [CrossRef]
  33. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci. 213, 157–206 (2008).
  34. H. J. Eichler, F. Massmann, E. Biselli, K. Richter, M. Glotz, L. Konetzke, and X. Yang, “Laser-induced free carrier and temperature gratings in silicon,” Phys. Rev. B 36, 3247–3253 (1987).
    [CrossRef]
  35. E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
    [CrossRef]
  36. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
    [CrossRef]
  37. Y. P. Raizer, Laser-induced discharge phenomena (Consultant Bureau, New York, 1977).
  38. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
    [CrossRef]
  39. S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368 (2003).
    [CrossRef]
  40. K. Yamasaki, S. Juodkazis, T. Lippert, M. Watanabe, S. Matsuo, and H. Misawa, “Dielectric breakdown of rubber materials by femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 76, 325–329 (2003).
    [CrossRef]
  41. S. Juodkazis, V. Mizeikis, Y. Nishijima, W. Ebina, H. Misawa, M. Kondo, and V. Švr?ek, “Three-dimensional femtosecond laser fabrication,” ECS Transact. 16, 57–63 (2009).
    [CrossRef]
  42. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
    [CrossRef]
  43. S. Maruo, and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
    [CrossRef]
  44. S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
    [CrossRef]
  45. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2010).
    [CrossRef]
  46. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photopolymerization,” J. Phys. Chem. C 113, 11720–11724 (2009).
    [CrossRef]
  47. S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
    [CrossRef]
  48. Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
    [CrossRef]
  49. A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: Fabrication and fluorescence imaging via ruby R lines,” Opt. Express 17, 10076–10081 (2009).
    [CrossRef] [PubMed]
  50. K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process. 81, 1–10 (2005).
    [CrossRef]
  51. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5µm by astigmatic beam focusing,” Opt. Lett. 27, 1938–1940 (2002).
    [CrossRef]
  52. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
    [CrossRef] [PubMed]
  53. D. Day, and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005).
    [CrossRef] [PubMed]
  54. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003).
    [CrossRef]
  55. L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
    [CrossRef] [PubMed]
  56. T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys., A Mater. Sci. Process. 81, 1583–1586 (2005).
    [CrossRef]

2010 (2)

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2010).
[CrossRef]

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
[CrossRef]

2009 (11)

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photopolymerization,” J. Phys. Chem. C 113, 11720–11724 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, Y. Nishijima, W. Ebina, H. Misawa, M. Kondo, and V. Švr?ek, “Three-dimensional femtosecond laser fabrication,” ECS Transact. 16, 57–63 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

M. Farsari, and B. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[CrossRef]

J. K. Gansel, K. Justyna, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving ?/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324, 910–913 (2009).
[CrossRef] [PubMed]

M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area,” in Proceedings of Micromachining and Microfabrication Process Technology XIV, Proc. SPIE 7204, 72040C (2009).

A. Pikulin, and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B 75, 195430 (2009).
[CrossRef]

H. Xia, W.-Y. Zhang, F.-F. Wang, D. Wu, X.-W. Liu, L. L. Chen, Q.-D. Chen, Y.-G. Ma, and H.-B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett. 95, 083118 (2009).
[CrossRef]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
[CrossRef] [PubMed]

A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: Fabrication and fluorescence imaging via ruby R lines,” Opt. Express 17, 10076–10081 (2009).
[CrossRef] [PubMed]

2008 (7)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008).
[CrossRef]

N. Uppal, and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” J. Micro/Nanolith MEMS MOEMS 7, 043002 (2008).
[CrossRef]

R. R. Gattass, and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–222 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[CrossRef]

N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci. 213, 157–206 (2008).

2007 (2)

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
[CrossRef]

F. Qi, Y. Li, D. Tan, H. Yang, and Q. Gong, “Polymerized nanotips via two-photon photopolymerization,” Opt. Express 15, 971–976 (2007).
[CrossRef] [PubMed]

2006 (3)

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[CrossRef]

S. H. Park, T. W. Lim, D. Y. Yang, R. H. Kim, and K. S. Lee, “Improvement of spatial resolution in nanostereolithography using radical quencher,” Macromol. Res. 14, 559–564 (2006).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

2005 (6)

S. H. Park, S. H. Lee, D.-Y. Yang, H. J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 154108 (2005).
[CrossRef]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process. 81, 1–10 (2005).
[CrossRef]

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys., A Mater. Sci. Process. 81, 1583–1586 (2005).
[CrossRef]

L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
[CrossRef] [PubMed]

D. Day, and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005).
[CrossRef] [PubMed]

2004 (3)

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal templates for infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
[CrossRef] [PubMed]

K. Kamada, “Characterization of two-photon absorption and its resonance enhancement by z-scan method,” in Proceedings of Nonlinear Optical Transmission and Multiphoton Processes in Organics II, Proc. SPIE 5516, 97–105 (2004).

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

2003 (5)

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368 (2003).
[CrossRef]

K. Yamasaki, S. Juodkazis, T. Lippert, M. Watanabe, S. Matsuo, and H. Misawa, “Dielectric breakdown of rubber materials by femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 76, 325–329 (2003).
[CrossRef]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28, 301–303 (2003).
[CrossRef] [PubMed]

K. Kamada, K. Matsunaga, A. Yoshino, and K. Ohta, “Two-photon-absorption-induced accumulated thermal effect on femtosecond Z-scan experiments studied with time-resolved thermal-lens spectrometry and its simulation,” J. Opt. Soc. Am. B 20, 529–537 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

2002 (4)

M. Straub, and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824–1826 (2002).
[CrossRef]

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5µm by astigmatic beam focusing,” Opt. Lett. 27, 1938–1940 (2002).
[CrossRef]

E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

S. K. Sundaram, and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[CrossRef]

2001 (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

2000 (2)

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

S. Maruo, and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

1998 (1)

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys. 8, 1105 (1998).

1997 (1)

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132–134 (1997).
[CrossRef]

1996 (2)

R. DeSalvo, A. A. Said, D. Hagan, E.W. VanStryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n(2) in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1987 (1)

H. J. Eichler, F. Massmann, E. Biselli, K. Richter, M. Glotz, L. Konetzke, and X. Yang, “Laser-induced free carrier and temperature gratings in silicon,” Phys. Rev. B 36, 3247–3253 (1987).
[CrossRef]

Arai, A.

Audouard, E.

Bade, K.

J. K. Gansel, K. Justyna, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Baldacchini, T.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

Barlow, S.

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

Beljonne, D.

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

Benayas, A.

Biselli, E.

H. J. Eichler, F. Massmann, E. Biselli, K. Richter, M. Glotz, L. Konetzke, and X. Yang, “Laser-induced free carrier and temperature gratings in silicon,” Phys. Rev. B 36, 3247–3253 (1987).
[CrossRef]

Bityurin, N.

A. Pikulin, and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B 75, 195430 (2009).
[CrossRef]

Borisov, R. A.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys. 8, 1105 (1998).

Bredas, J.-L.

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Cerullo, G.

Chen, K. P.

Chen, L. L.

H. Xia, W.-Y. Zhang, F.-F. Wang, D. Wu, X.-W. Liu, L. L. Chen, Q.-D. Chen, Y.-G. Ma, and H.-B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett. 95, 083118 (2009).
[CrossRef]

Chen, Q.-D.

H. Xia, W.-Y. Zhang, F.-F. Wang, D. Wu, X.-W. Liu, L. L. Chen, Q.-D. Chen, Y.-G. Ma, and H.-B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett. 95, 083118 (2009).
[CrossRef]

Cheng, G.

Cheng, Y.

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process. 81, 1–10 (2005).
[CrossRef]

Chichkov, B.

M. Farsari, and B. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Chichkov, B. N.

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008).
[CrossRef]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28, 301–303 (2003).
[CrossRef] [PubMed]

Cronauer, C.

Day, D.

Decker, M.

J. K. Gansel, K. Justyna, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

DeSalvo, R.

R. DeSalvo, A. A. Said, D. Hagan, E.W. VanStryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n(2) in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Domann, G.

Dorojkina, G. N.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys. 8, 1105 (1998).

Eaton, S.

Ebina, W.

S. Juodkazis, V. Mizeikis, Y. Nishijima, W. Ebina, H. Misawa, M. Kondo, and V. Švr?ek, “Three-dimensional femtosecond laser fabrication,” ECS Transact. 16, 57–63 (2009).
[CrossRef]

Egbert, A.

Ehrlich, J.

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

Eichler, H. J.

H. J. Eichler, F. Massmann, E. Biselli, K. Richter, M. Glotz, L. Konetzke, and X. Yang, “Laser-induced free carrier and temperature gratings in silicon,” Phys. Rev. B 36, 3247–3253 (1987).
[CrossRef]

Farrer, R. A.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

Farsari, M.

M. Farsari, and B. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Fotakis, C.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008).
[CrossRef]

Fourkas, J. T.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving ?/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324, 910–913 (2009).
[CrossRef] [PubMed]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

Frohlich, L.

Gadonas, R.

M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area,” in Proceedings of Micromachining and Microfabrication Process Technology XIV, Proc. SPIE 7204, 72040C (2009).

Gaidukeviciute, A.

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008).
[CrossRef]

Gamaly, E.

E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

Gamaly, E. G.

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368 (2003).
[CrossRef]

Gansel, J. K.

J. K. Gansel, K. Justyna, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Gattass, R. R.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving ?/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324, 910–913 (2009).
[CrossRef] [PubMed]

R. R. Gattass, and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–222 (2008).
[CrossRef]

Gershgoren, E.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving ?/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324, 910–913 (2009).
[CrossRef] [PubMed]

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008).
[CrossRef]

Glotz, M.

H. J. Eichler, F. Massmann, E. Biselli, K. Richter, M. Glotz, L. Konetzke, and X. Yang, “Laser-induced free carrier and temperature gratings in silicon,” Phys. Rev. B 36, 3247–3253 (1987).
[CrossRef]

Gong, Q.

Gray, D.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008).
[CrossRef]

Gu, M.

Hagan, D.

R. DeSalvo, A. A. Said, D. Hagan, E.W. VanStryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n(2) in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Hashimoto, T.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2010).
[CrossRef]

Heikal, A.

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

Herman, P.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Houbertz, R.

Hu, Z.

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

Hwang, H.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving ?/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324, 910–913 (2009).
[CrossRef] [PubMed]

Ikuta, K.

S. Maruo, and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

Ishikawa, A.

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[CrossRef]

Jaque, D.

Jarutis, V.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

Juodkazis, S.

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2010).
[CrossRef]

S. Juodkazis, V. Mizeikis, Y. Nishijima, W. Ebina, H. Misawa, M. Kondo, and V. Švr?ek, “Three-dimensional femtosecond laser fabrication,” ECS Transact. 16, 57–63 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photopolymerization,” J. Phys. Chem. C 113, 11720–11724 (2009).
[CrossRef]

N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci. 213, 157–206 (2008).

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys., A Mater. Sci. Process. 81, 1583–1586 (2005).
[CrossRef]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal templates for infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
[CrossRef] [PubMed]

K. Yamasaki, S. Juodkazis, T. Lippert, M. Watanabe, S. Matsuo, and H. Misawa, “Dielectric breakdown of rubber materials by femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 76, 325–329 (2003).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368 (2003).
[CrossRef]

Justyna, K.

J. K. Gansel, K. Justyna, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Kamada, K.

N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008).
[CrossRef]

K. Kamada, “Characterization of two-photon absorption and its resonance enhancement by z-scan method,” in Proceedings of Nonlinear Optical Transmission and Multiphoton Processes in Organics II, Proc. SPIE 5516, 97–105 (2004).

K. Kamada, K. Matsunaga, A. Yoshino, and K. Ohta, “Two-photon-absorption-induced accumulated thermal effect on femtosecond Z-scan experiments studied with time-resolved thermal-lens spectrometry and its simulation,” J. Opt. Soc. Am. B 20, 529–537 (2003).
[CrossRef]

Kawata, S.

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132–134 (1997).
[CrossRef]

Kim, R. H.

S. H. Park, T. W. Lim, D. Y. Yang, R. H. Kim, and K. S. Lee, “Improvement of spatial resolution in nanostereolithography using radical quencher,” Macromol. Res. 14, 559–564 (2006).
[CrossRef]

Kondo, M.

S. Juodkazis, V. Mizeikis, Y. Nishijima, W. Ebina, H. Misawa, M. Kondo, and V. Švr?ek, “Three-dimensional femtosecond laser fabrication,” ECS Transact. 16, 57–63 (2009).
[CrossRef]

Kondo, T.

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys., A Mater. Sci. Process. 81, 1583–1586 (2005).
[CrossRef]

Konetzke, L.

H. J. Eichler, F. Massmann, E. Biselli, K. Richter, M. Glotz, L. Konetzke, and X. Yang, “Laser-induced free carrier and temperature gratings in silicon,” Phys. Rev. B 36, 3247–3253 (1987).
[CrossRef]

Kong, H. J.

S. H. Park, S. H. Lee, D.-Y. Yang, H. J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 154108 (2005).
[CrossRef]

Koroteev, N. I.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys. 8, 1105 (1998).

Kozenkov, V. M.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys. 8, 1105 (1998).

LaFratta, C. N.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

Laporta, P.

Lee, K. S.

S. H. Park, T. W. Lim, D. Y. Yang, R. H. Kim, and K. S. Lee, “Improvement of spatial resolution in nanostereolithography using radical quencher,” Macromol. Res. 14, 559–564 (2006).
[CrossRef]

Lee, K.-S.

S. H. Park, S. H. Lee, D.-Y. Yang, H. J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 154108 (2005).
[CrossRef]

Lee, S. H.

S. H. Park, S. H. Lee, D.-Y. Yang, H. J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 154108 (2005).
[CrossRef]

Li, L.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving ?/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324, 910–913 (2009).
[CrossRef] [PubMed]

Li, Y.

Lim, T. W.

S. H. Park, T. W. Lim, D. Y. Yang, R. H. Kim, and K. S. Lee, “Improvement of spatial resolution in nanostereolithography using radical quencher,” Macromol. Res. 14, 559–564 (2006).
[CrossRef]

Linden, S.

J. K. Gansel, K. Justyna, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Lippert, T.

K. Yamasaki, S. Juodkazis, T. Lippert, M. Watanabe, S. Matsuo, and H. Misawa, “Dielectric breakdown of rubber materials by femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 76, 325–329 (2003).
[CrossRef]

Liu, X.-W.

H. Xia, W.-Y. Zhang, F.-F. Wang, D. Wu, X.-W. Liu, L. L. Chen, Q.-D. Chen, Y.-G. Ma, and H.-B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett. 95, 083118 (2009).
[CrossRef]

Luther-Davies, B.

E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

Ma, Y.-G.

H. Xia, W.-Y. Zhang, F.-F. Wang, D. Wu, X.-W. Liu, L. L. Chen, Q.-D. Chen, Y.-G. Ma, and H.-B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett. 95, 083118 (2009).
[CrossRef]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

MacCraith, B. D.

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008).
[CrossRef]

Magnitskii, S. A.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys. 8, 1105 (1998).

Malakhov, D. V.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys. 8, 1105 (1998).

Malinauskas, M.

M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area,” in Proceedings of Micromachining and Microfabrication Process Technology XIV, Proc. SPIE 7204, 72040C (2009).

Marangoni, M.

Marder, S. R.

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

Maruo, S.

S. Maruo, and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132–134 (1997).
[CrossRef]

Massmann, F.

H. J. Eichler, F. Massmann, E. Biselli, K. Richter, M. Glotz, L. Konetzke, and X. Yang, “Laser-induced free carrier and temperature gratings in silicon,” Phys. Rev. B 36, 3247–3253 (1987).
[CrossRef]

Matsunaga, K.

Matsuo, S.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[CrossRef]

K. Yamasaki, S. Juodkazis, T. Lippert, M. Watanabe, S. Matsuo, and H. Misawa, “Dielectric breakdown of rubber materials by femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 76, 325–329 (2003).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368 (2003).
[CrossRef]

Mauclair, C.

Mazur, E.

R. R. Gattass, and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–222 (2008).
[CrossRef]

S. K. Sundaram, and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[CrossRef]

McCord-Maughon, D.

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

McMillen, B.

Midorikawa, K.

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process. 81, 1–10 (2005).
[CrossRef]

Misawa, H.

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photopolymerization,” J. Phys. Chem. C 113, 11720–11724 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, Y. Nishijima, W. Ebina, H. Misawa, M. Kondo, and V. Švr?ek, “Three-dimensional femtosecond laser fabrication,” ECS Transact. 16, 57–63 (2009).
[CrossRef]

N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci. 213, 157–206 (2008).

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys., A Mater. Sci. Process. 81, 1583–1586 (2005).
[CrossRef]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal templates for infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
[CrossRef] [PubMed]

K. Yamasaki, S. Juodkazis, T. Lippert, M. Watanabe, S. Matsuo, and H. Misawa, “Dielectric breakdown of rubber materials by femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 76, 325–329 (2003).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368 (2003).
[CrossRef]

Mishchik, K.

Mizeikis, V.

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
[CrossRef]

S. Juodkazis, V. Mizeikis, Y. Nishijima, W. Ebina, H. Misawa, M. Kondo, and V. Švr?ek, “Three-dimensional femtosecond laser fabrication,” ECS Transact. 16, 57–63 (2009).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photopolymerization,” J. Phys. Chem. C 113, 11720–11724 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci. 213, 157–206 (2008).

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
[CrossRef]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal templates for infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
[CrossRef] [PubMed]

Morikawa, J.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2010).
[CrossRef]

Murazawa, N.

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
[CrossRef]

N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008).
[CrossRef]

Nakamura, O.

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132–134 (1997).
[CrossRef]

Naughton, M. J.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

Nishijima, Y.

S. Juodkazis, V. Mizeikis, Y. Nishijima, W. Ebina, H. Misawa, M. Kondo, and V. Švr?ek, “Three-dimensional femtosecond laser fabrication,” ECS Transact. 16, 57–63 (2009).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Ohta, K.

Orie, A.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2010).
[CrossRef]

Osellame, R.

Ostendorf, A.

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008).
[CrossRef]

Ovsianikov, A.

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

Park, S. H.

S. H. Park, T. W. Lim, D. Y. Yang, R. H. Kim, and K. S. Lee, “Improvement of spatial resolution in nanostereolithography using radical quencher,” Macromol. Res. 14, 559–564 (2006).
[CrossRef]

S. H. Park, S. H. Lee, D.-Y. Yang, H. J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 154108 (2005).
[CrossRef]

Parker, T. C.

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

Perry, J.

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Pikulin, A.

A. Pikulin, and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B 75, 195430 (2009).
[CrossRef]

Polli, D.

Popall, M.

Purlys, V.

M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area,” in Proceedings of Micromachining and Microfabrication Process Technology XIV, Proc. SPIE 7204, 72040C (2009).

Qi, F.

Ramponi, R.

Richter, K.

H. J. Eichler, F. Massmann, E. Biselli, K. Richter, M. Glotz, L. Konetzke, and X. Yang, “Laser-induced free carrier and temperature gratings in silicon,” Phys. Rev. B 36, 3247–3253 (1987).
[CrossRef]

Rill, M. S.

J. K. Gansel, K. Justyna, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Rockel, H.

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

Rode, A.

E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

Rode, A. V.

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368 (2003).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Rumi, M.

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

Rutkauskas, M.

M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area,” in Proceedings of Micromachining and Microfabrication Process Technology XIV, Proc. SPIE 7204, 72040C (2009).

Said, A. A.

R. DeSalvo, A. A. Said, D. Hagan, E.W. VanStryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n(2) in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Saile, V.

J. K. Gansel, K. Justyna, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Sakellari, I.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008).
[CrossRef]

Saleh, B. E. A.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

Schulz, J.

Seet, K. K.

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal templates for infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
[CrossRef] [PubMed]

Serbin, J.

Shah, L.

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. Hagan, E.W. VanStryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n(2) in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Shiakolas, P. S.

N. Uppal, and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” J. Micro/Nanolith MEMS MOEMS 7, 043002 (2008).
[CrossRef]

Shibuya, T.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photopolymerization,” J. Phys. Chem. C 113, 11720–11724 (2009).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Silvestri, S. D.

Stoian, R.

Straub, M.

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

Sugioka, K.

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process. 81, 1–10 (2005).
[CrossRef]

Sun, H.-B.

H. Xia, W.-Y. Zhang, F.-F. Wang, D. Wu, X.-W. Liu, L. L. Chen, Q.-D. Chen, Y.-G. Ma, and H.-B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett. 95, 083118 (2009).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

Sun, Q.

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
[CrossRef]

Sundaram, S. K.

S. K. Sundaram, and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[CrossRef]

Švrcek, V.

S. Juodkazis, V. Mizeikis, Y. Nishijima, W. Ebina, H. Misawa, M. Kondo, and V. Švr?ek, “Three-dimensional femtosecond laser fabrication,” ECS Transact. 16, 57–63 (2009).
[CrossRef]

Taccheo, S.

Takada, K.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

Tan, D.

Tanaka, T.

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

Tarasishin, A. V.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys. 8, 1105 (1998).

Teich, M. C.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

Thayumanavan, S.

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

Thiel, M.

J. K. Gansel, K. Justyna, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Tikhonchuk, V.

E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

Tünnermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Ueno, K.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photopolymerization,” J. Phys. Chem. C 113, 11720–11724 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[CrossRef]

Uppal, N.

N. Uppal, and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” J. Micro/Nanolith MEMS MOEMS 7, 043002 (2008).
[CrossRef]

Vamvakaki, M.

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

VanStryland, E.W.

R. DeSalvo, A. A. Said, D. Hagan, E.W. VanStryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n(2) in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

von Freymann, G.

J. K. Gansel, K. Justyna, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Wang, F.-F.

H. Xia, W.-Y. Zhang, F.-F. Wang, D. Wu, X.-W. Liu, L. L. Chen, Q.-D. Chen, Y.-G. Ma, and H.-B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett. 95, 083118 (2009).
[CrossRef]

Watanabe, M.

K. Yamasaki, S. Juodkazis, T. Lippert, M. Watanabe, S. Matsuo, and H. Misawa, “Dielectric breakdown of rubber materials by femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 76, 325–329 (2003).
[CrossRef]

Wegener, M.

J. K. Gansel, K. Justyna, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Wegst, U. G. K.

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
[CrossRef]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Wu, D.

H. Xia, W.-Y. Zhang, F.-F. Wang, D. Wu, X.-W. Liu, L. L. Chen, Q.-D. Chen, Y.-G. Ma, and H.-B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett. 95, 083118 (2009).
[CrossRef]

Xia, H.

H. Xia, W.-Y. Zhang, F.-F. Wang, D. Wu, X.-W. Liu, L. L. Chen, Q.-D. Chen, Y.-G. Ma, and H.-B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett. 95, 083118 (2009).
[CrossRef]

Yamasaki, K.

K. Yamasaki, S. Juodkazis, T. Lippert, M. Watanabe, S. Matsuo, and H. Misawa, “Dielectric breakdown of rubber materials by femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 76, 325–329 (2003).
[CrossRef]

Yang, D. Y.

S. H. Park, T. W. Lim, D. Y. Yang, R. H. Kim, and K. S. Lee, “Improvement of spatial resolution in nanostereolithography using radical quencher,” Macromol. Res. 14, 559–564 (2006).
[CrossRef]

Yang, D.-Y.

S. H. Park, S. H. Lee, D.-Y. Yang, H. J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 154108 (2005).
[CrossRef]

Yang, H.

Yang, X.

H. J. Eichler, F. Massmann, E. Biselli, K. Richter, M. Glotz, L. Konetzke, and X. Yang, “Laser-induced free carrier and temperature gratings in silicon,” Phys. Rev. B 36, 3247–3253 (1987).
[CrossRef]

Yokota, Y.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photopolymerization,” J. Phys. Chem. C 113, 11720–11724 (2009).
[CrossRef]

Yoshino, A.

Zhang, W.-Y.

H. Xia, W.-Y. Zhang, F.-F. Wang, D. Wu, X.-W. Liu, L. L. Chen, Q.-D. Chen, Y.-G. Ma, and H.-B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett. 95, 083118 (2009).
[CrossRef]

Zheltikov, A. M.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys. 8, 1105 (1998).

ACS Nano (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[CrossRef]

Adv. Polym. Sci. (1)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci. 213, 157–206 (2008).

Appl. Phys. B (2)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368 (2003).
[CrossRef]

Appl. Phys. Lett. (6)

S. Maruo, and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

H. Xia, W.-Y. Zhang, F.-F. Wang, D. Wu, X.-W. Liu, L. L. Chen, Q.-D. Chen, Y.-G. Ma, and H.-B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett. 95, 083118 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007).
[CrossRef]

S. H. Park, S. H. Lee, D.-Y. Yang, H. J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 154108 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (5)

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process. 81, 1–10 (2005).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys., A Mater. Sci. Process. 81, 1583–1586 (2005).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2010).
[CrossRef]

K. Yamasaki, S. Juodkazis, T. Lippert, M. Watanabe, S. Matsuo, and H. Misawa, “Dielectric breakdown of rubber materials by femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 76, 325–329 (2003).
[CrossRef]

Bull. Chem. Soc. Jpn. (1)

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[CrossRef]

ECS Transact. (1)

S. Juodkazis, V. Mizeikis, Y. Nishijima, W. Ebina, H. Misawa, M. Kondo, and V. Švr?ek, “Three-dimensional femtosecond laser fabrication,” ECS Transact. 16, 57–63 (2009).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. DeSalvo, A. A. Said, D. Hagan, E.W. VanStryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n(2) in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Am. Chem. Soc. (1)

M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000).
[CrossRef]

J. Appl. Phys. (2)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

J. Micro/Nanolith MEMS MOEMS (1)

N. Uppal, and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” J. Micro/Nanolith MEMS MOEMS 7, 043002 (2008).
[CrossRef]

J. Micromech. Microeng. (1)

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photopolymerization,” J. Phys. Chem. C 113, 11720–11724 (2009).
[CrossRef]

Laser Chem. (1)

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008).
[CrossRef]

Laser Phys. (1)

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys. 8, 1105 (1998).

Macromol. Res. (1)

S. H. Park, T. W. Lim, D. Y. Yang, R. H. Kim, and K. S. Lee, “Improvement of spatial resolution in nanostereolithography using radical quencher,” Macromol. Res. 14, 559–564 (2006).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008).
[CrossRef]

Nat. Mater. (1)

S. K. Sundaram, and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[CrossRef]

Nat. Photonics (2)

R. R. Gattass, and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–222 (2008).
[CrossRef]

M. Farsari, and B. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[CrossRef]

Nature (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Phys. Plasmas (1)

E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

Phys. Rev. B (3)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[CrossRef]

H. J. Eichler, F. Massmann, E. Biselli, K. Richter, M. Glotz, L. Konetzke, and X. Yang, “Laser-induced free carrier and temperature gratings in silicon,” Phys. Rev. B 36, 3247–3253 (1987).
[CrossRef]

A. Pikulin, and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B 75, 195430 (2009).
[CrossRef]

Proc. SPIE (2)

M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area,” in Proceedings of Micromachining and Microfabrication Process Technology XIV, Proc. SPIE 7204, 72040C (2009).

K. Kamada, “Characterization of two-photon absorption and its resonance enhancement by z-scan method,” in Proceedings of Nonlinear Optical Transmission and Multiphoton Processes in Organics II, Proc. SPIE 5516, 97–105 (2004).

Science (2)

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving ?/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324, 910–913 (2009).
[CrossRef] [PubMed]

J. K. Gansel, K. Justyna, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Other (4)

C. A. Mack, Optical Lithography, (SPIE Field Guides, vol. FG06, SPIE Press, Bellingham, 2006).
[CrossRef]

R. W. Boyd, Nonlinear Optics (Academic Press, London, 2nd ed., 2003).

Y. P. Raizer, Laser-induced discharge phenomena (Consultant Bureau, New York, 1977).

A. E. Siegman, Lasers (University Science Books, Mill Valley, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The photoluminescence excitation (PLE) spectra of the pure resist SZ2080 (a), uncoated cover glass, resist with 2 wt% of Irgacure 369 (Irg.) and 4,4’ -bis(diethylaminobenzo phenone) (Bis.) in (c) and (d), respectively. The wavelength of PLE maximum, λabs max as x, corresponds to the most efficient in-bulk energy delivery required for the 3D structuring of chosen resists. Artifacts due to different orders of diffraction appear as slanted lines on the PLE maps; 0 th -order diffraction is marked in (b).

Fig. 2.
Fig. 2.

Functional dependencies of the TPA coefficient, β, and nonlinear refractive index, n 2 on the normalized photon energy determined by the polynomial functions G 2 and F 2, respectively [22].

Fig. 3.
Fig. 3.

SEM images of the first (a) and second (b) layer of 3D photo-polymerized logpile structures in SZ2080 resist with 2wt.% Irg. Polymerization was carried out by 800 nm/150 fs pulses of 5.2 nJ (at focal spot) focused by an objective lens of NA = 1.42 at the corresponding maximum intensity I 0 = 18.7 TW/cm2. (c) Spiral recorded at 2 nJ or I 0 = 7.2 TW/cm2. Scale bars, 1 μm.

Fig. 4.
Fig. 4.

The smallest width of a photo-polymerized log vs the ratio λabs max /λl , where the λabs max is the absorption maximum of the PLE (see, Fig. 1) and λl nm is the laser wavelength: 1030 nm (1–3) and 800 nm (4,5). Right axis shows functional behavior of two-photon absorption, β, and refraction, n 2, (see, Fig. 2). Inset SEM images (1–3) show structures made at the same focusing conditions corresponding to: 13 TW/cm2 at focus I0=2(Ep/tp)πw2 for pulse duration of 300 fs, wavelength 1030 nm, pulse energy Ep = 14.5 nJ) in SZ2080 pure (1) and doped with 1 wt.% of Irg.(2) and Bis. (3), respectively. The markers (4,5) corresponds to SZ2080 with 2 wt.% of Irg. and SU-8, respectively, structured with 800 nm, 150 fs pulses focused by NA = 1.42 objective lens and are shown here for comparison [42].

Tables (1)

Tables Icon

Table 1. Qualitative comparison of different laser structuring regimes for 1030 nm/300 fs pulses in SZ2080 at different photo-sensitization; focusing NA = 1.4 and scanning speed 100 μm/s.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n2[cm2/W]=Kh̄cEp2n02Eg4 G2 (h̄ω/Eg)
β[cm/W]=KEpn02Eg3F2(2h̄ω/Eg)
Δn=n2I+nehNc,
dnedt=newimp+nawmpi,
neIλt={ne0+nawmpiwimp[1exp(wimpt)]}exp(wimpt) .
wimpεoscJi 2ω2νeph(νeph2+ω2) ,
εosc[eV]=9.3(I1014[W/cm2])λμm2,
wmpiωnph3/2(εosc2Ji)nph,

Metrics