Abstract

Colon samples with both healthy and cancerous regions have been imaged in diffuse light and backscattering geometry by using a Mueller imaging polarimeter. The tumoral parts at the early stage of cancer are found to be less depolarizing than the healthy ones. This trend clearly shows that polarimetric imaging may provide useful contrasts for optical biopsy. Moreover, both types of tissues are less depolarizing when the incident polarization is linear rather than circular. However, to really optimize an optical biopsy technique based on polarimetric imaging a realistic model is needed for polarized light scattering by tissues. Our approach to this goal is based on numerical Monte-Carlo simulations of polarized light propagation in biological tissues modeled as suspensions of monodisperse spherical scatterers representing the cell nuclei. The numerical simulations were validated by comparison with measurements on aqueous polystyrene sphere suspensions, which are commonly used as tissue phantoms. Such systems exhibit lower depolarization for incident linear polarization in the Rayleigh scattering regime, i.e. when the sphere diameters are smaller than the wavelength, which is obviously not the case for cell nuclei. In contrast, our results show that this behaviour can also be seen for “large” scatterers provided the optical index contrast between the spheres and the surrounding medium is small enough, as it is likely to be the case in biological tissues.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Zhai, G. W. Kattawar, and P. Yang, “Mueller matrix imaging of targets under an air-sea interface,” Appl. Opt. 48(2), 250–260 (2009).
    [CrossRef] [PubMed]
  2. P. Yang, H. Wei, G. W. Kattawar, Y. X. Hu, D. M. Winker, C. A. Hostetler, and B. A. Baum, “Sensitivity of the backscattering Mueller matrix to particle shape and thermodynamic phase,” Appl. Opt. 42(21), 4389–4395 (2003).
    [CrossRef] [PubMed]
  3. S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (1–7) (2008).
  4. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998).
    [CrossRef]
  5. D. Hidović-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005).
    [CrossRef] [PubMed]
  6. D. Hidović-Rowe, E. Claridge, T. Ismail, and P. Taniere, “Analysis of multispectral images of the colon to reveal histological changes characteristic of cancerJ Graham, et al eds., Medical Image Understanding Analysis MIUA 1,66–70 (2006).
  7. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
    [CrossRef]
  8. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36(1), 125–135 (1997).
    [CrossRef] [PubMed]
  9. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1(13), 441–453 (1997), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-1-13-441 .
    [CrossRef] [PubMed]
  10. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24(8), 537–539 (1999).
    [CrossRef]
  11. M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).
    [CrossRef]
  12. M. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001).
    [CrossRef]
  13. S. Bartel and A. H. Hielscher, “Monte carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39(10), 1580–1588 (2000).
    [CrossRef]
  14. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
    [CrossRef] [PubMed]
  15. F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42(16), 3290–3296 (2003).
    [CrossRef] [PubMed]
  16. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4420 .
    [CrossRef] [PubMed]
  17. X. Guo, M. F. G. Wood, and A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15(3), 1348–1360 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1348 .
    [CrossRef] [PubMed]
  18. V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical polarization in biomedical applications, Springer (2006).
  19. M. Anastasiadou, S. Ben Hatit, R. Ossikovski, S. Guyot, and A. De Martino, “Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices,” J. European Opt. Soc. - Rapid Publications 2, 07018 (2007).
    [CrossRef]
  20. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43(14), 2824–2832 (2004).
    [CrossRef] [PubMed]
  21. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
    [CrossRef] [PubMed]
  22. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley-VCH, 2004)
  23. B. Kaplan, G. Ledanois, and B. Drévillon, “Mueller matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation,” Appl. Opt. 40(16), 2769–2777 (2001).
    [CrossRef]
  24. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
    [CrossRef] [PubMed]
  25. J. R. Mourant, T. M. Johnson, and J. P. Freyer, “Characterizing Mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. 40(28), 5114–5123 (2001).
    [CrossRef]
  26. H. C. van de Hulst, Light scattering by small particles, (Dover, New York, 1981)

2009 (1)

2007 (2)

X. Guo, M. F. G. Wood, and A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15(3), 1348–1360 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1348 .
[CrossRef] [PubMed]

M. Anastasiadou, S. Ben Hatit, R. Ossikovski, S. Guyot, and A. De Martino, “Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices,” J. European Opt. Soc. - Rapid Publications 2, 07018 (2007).
[CrossRef]

2006 (1)

D. Hidović-Rowe, E. Claridge, T. Ismail, and P. Taniere, “Analysis of multispectral images of the colon to reveal histological changes characteristic of cancerJ Graham, et al eds., Medical Image Understanding Analysis MIUA 1,66–70 (2006).

D. Hidović-Rowe, E. Claridge, T. Ismail, and P. Taniere, “Analysis of multispectral images of the colon to reveal histological changes characteristic of cancerJ Graham, et al eds., Medical Image Understanding Analysis MIUA 1,66–70 (2006).

2005 (2)

2004 (1)

2003 (2)

2002 (2)

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[CrossRef] [PubMed]

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[CrossRef] [PubMed]

2001 (3)

2000 (2)

S. Bartel and A. H. Hielscher, “Monte carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39(10), 1580–1588 (2000).
[CrossRef]

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).
[CrossRef]

1999 (2)

1998 (1)

1997 (2)

1994 (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Anastasiadou, M.

M. Anastasiadou, S. Ben Hatit, R. Ossikovski, S. Guyot, and A. De Martino, “Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices,” J. European Opt. Soc. - Rapid Publications 2, 07018 (2007).
[CrossRef]

Backman, V.

Bartel, S.

Baum, B. A.

Ben Hatit, S.

M. Anastasiadou, S. Ben Hatit, R. Ossikovski, S. Guyot, and A. De Martino, “Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices,” J. European Opt. Soc. - Rapid Publications 2, 07018 (2007).
[CrossRef]

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Bigio, I. J.

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Burke, P.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).
[CrossRef]

Claridge, E.

D. Hidović-Rowe, E. Claridge, T. Ismail, and P. Taniere, “Analysis of multispectral images of the colon to reveal histological changes characteristic of cancerJ Graham, et al eds., Medical Image Understanding Analysis MIUA 1,66–70 (2006).

D. Hidović-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005).
[CrossRef] [PubMed]

De Martino, A.

M. Anastasiadou, S. Ben Hatit, R. Ossikovski, S. Guyot, and A. De Martino, “Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices,” J. European Opt. Soc. - Rapid Publications 2, 07018 (2007).
[CrossRef]

B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43(14), 2824–2832 (2004).
[CrossRef] [PubMed]

Drévillon, B.

Eick, A. A.

Feld, M. S.

Fitzmaurice, M.

Freyer, J. P.

Graham, J

D. Hidović-Rowe, E. Claridge, T. Ismail, and P. Taniere, “Analysis of multispectral images of the colon to reveal histological changes characteristic of cancerJ Graham, et al eds., Medical Image Understanding Analysis MIUA 1,66–70 (2006).

Guo, X.

Guyot, S.

M. Anastasiadou, S. Ben Hatit, R. Ossikovski, S. Guyot, and A. De Martino, “Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices,” J. European Opt. Soc. - Rapid Publications 2, 07018 (2007).
[CrossRef]

Hidovic-Rowe, D.

D. Hidović-Rowe, E. Claridge, T. Ismail, and P. Taniere, “Analysis of multispectral images of the colon to reveal histological changes characteristic of cancerJ Graham, et al eds., Medical Image Understanding Analysis MIUA 1,66–70 (2006).

D. Hidović-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005).
[CrossRef] [PubMed]

Hielscher, A. H.

Hillman, L. W.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).
[CrossRef]

Hostetler, C. A.

Hu, Y. X.

Ismail, T.

D. Hidović-Rowe, E. Claridge, T. Ismail, and P. Taniere, “Analysis of multispectral images of the colon to reveal histological changes characteristic of cancerJ Graham, et al eds., Medical Image Understanding Analysis MIUA 1,66–70 (2006).

Jacques, S. L.

Jaillon, F.

Johnson, T. M.

Kaplan, B.

Kattawar, G. W.

Laude-Boulesteix, B.

Ledanois, G.

Lompado, A.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).
[CrossRef]

Maitland, D. J.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[CrossRef] [PubMed]

Manoharan, R.

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Mourant, J. R.

Ossikovski, R.

M. Anastasiadou, S. Ben Hatit, R. Ossikovski, S. Guyot, and A. De Martino, “Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices,” J. European Opt. Soc. - Rapid Publications 2, 07018 (2007).
[CrossRef]

Perelman, L. T.

Prahl, S. A.

Ramella-Roman, J. C.

Saint-Jalmes, H.

Sankaran, V.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[CrossRef] [PubMed]

Schmitt, J. M.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Schwartz, L.

Shen, D.

Smith, M.

M. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001).
[CrossRef]

Smith, M. H.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).
[CrossRef]

Taniere, P.

D. Hidović-Rowe, E. Claridge, T. Ismail, and P. Taniere, “Analysis of multispectral images of the colon to reveal histological changes characteristic of cancerJ Graham, et al eds., Medical Image Understanding Analysis MIUA 1,66–70 (2006).

Tanner, E.

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).
[CrossRef]

Van Dam, J.

Vitkin, A.

Walsh, J. T.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[CrossRef] [PubMed]

Wang, L. V.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[CrossRef] [PubMed]

G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24(8), 537–539 (1999).
[CrossRef]

Wang, X.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[CrossRef] [PubMed]

Wei, H.

Winker, D. M.

Wood, M. F. G.

Yang, P.

Yao, G.

Zhai, P. W.

Zonios, G.

Appl. Opt. (10)

A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36(1), 125–135 (1997).
[CrossRef] [PubMed]

S. Bartel and A. H. Hielscher, “Monte carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39(10), 1580–1588 (2000).
[CrossRef]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998).
[CrossRef]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[CrossRef]

B. Kaplan, G. Ledanois, and B. Drévillon, “Mueller matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation,” Appl. Opt. 40(16), 2769–2777 (2001).
[CrossRef]

J. R. Mourant, T. M. Johnson, and J. P. Freyer, “Characterizing Mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. 40(28), 5114–5123 (2001).
[CrossRef]

F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42(16), 3290–3296 (2003).
[CrossRef] [PubMed]

P. Yang, H. Wei, G. W. Kattawar, Y. X. Hu, D. M. Winker, C. A. Hostetler, and B. A. Baum, “Sensitivity of the backscattering Mueller matrix to particle shape and thermodynamic phase,” Appl. Opt. 42(21), 4389–4395 (2003).
[CrossRef] [PubMed]

B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43(14), 2824–2832 (2004).
[CrossRef] [PubMed]

P. W. Zhai, G. W. Kattawar, and P. Yang, “Mueller matrix imaging of targets under an air-sea interface,” Appl. Opt. 48(2), 250–260 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002).
[CrossRef] [PubMed]

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[CrossRef] [PubMed]

J. European Opt. Soc. - Rapid Publications (1)

M. Anastasiadou, S. Ben Hatit, R. Ossikovski, S. Guyot, and A. De Martino, “Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices,” J. European Opt. Soc. - Rapid Publications 2, 07018 (2007).
[CrossRef]

Medical Image Understanding Analysis MIUA (1)

D. Hidović-Rowe, E. Claridge, T. Ismail, and P. Taniere, “Analysis of multispectral images of the colon to reveal histological changes characteristic of cancerJ Graham, et al eds., Medical Image Understanding Analysis MIUA 1,66–70 (2006).

Opt. Express (3)

Opt. Lett. (1)

Phys. Med. Biol. (1)

D. Hidović-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Proc. SPIE (2)

M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000).
[CrossRef]

M. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001).
[CrossRef]

Other (4)

V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical polarization in biomedical applications, Springer (2006).

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (1–7) (2008).

H. C. van de Hulst, Light scattering by small particles, (Dover, New York, 1981)

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley-VCH, 2004)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a): Photo of a colon sample taken at 600 nm, with a tumor in the upper right part of the image. (b): Photo of another sample, taken at 700 nm. Again, tumoral nodules are present in the upper right part of the image. (c) Normalized Muller matrix images of the sample (a) at 600 nm. (d) Normalized Muller matrix images of the sample (b) at 700nm. The polarimetric images displayed are 5 cm × 5 cm, with absolute scales on the right of each figure. The tumoral parts are surrounded by black ellipses.

Fig. 2
Fig. 2

Backscattering Mueller matrix images: (a, b) measured and (c, d) simulated for the suspension of polystyrene spheres in water, (a, c) R1 = 50 nm, (b, d) R2 = 1500 nm and illuminated by a HeNe beam (λ = 633 nm) focused at the center of the cell. The central spot on experimental images (a, b) is a shadow of the mask eliminating the contribution of the specular reflection.

Fig. 3
Fig. 3

Angular distribution of backscattering Mueller matrix coefficients at radial position of 0.46 cm (λ = 633 nm) for the suspensions of spheres of polystyrene in water: (a) R1 = 50 nm, (b) R2 = 1500 nm, measured (open circles) and simulated (lines).

Fig. 4
Fig. 4

Simulated normalized backscattering Mueller matrix images with diffuse light illumination at λ = 633 nm for suspensions of polystyrene particles (ns = 1.59) in water (nm = 1.33) (a) R1 = 50 nm, (b) R2 = 1500 nm.

Fig. 5
Fig. 5

Simulated backscattering Mueller matrix image for the suspension of nuclei (ns = 1.4) in cytoplasm (nm = 1.36), R = 3000 nm at λ = 633 nm with point source illumination.

Tables (1)

Tables Icon

Table 1 Size parameter, optical index contrast, phase shift and efficiency factor for simulated tissue phantoms

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

| M 22 |=| M 33 |>| M 44 |,
| M 22 |=| M 33 |>| M 44 |,

Metrics