Abstract

A Nd3+-doped Schott LG680 silicate glass laser was pumped with a single-mode 200-mW diode. Efficient cw operation was demonstrated with 37.5 mW output power and 36% slope efficiency. Passive mode-locking with a semiconductor saturable absorber mirror yielded 80-fs pulses with a two-prism setup. Alternatively, pulses of ~200-fs, tunable over the range 1058-1076 nm, were obtained with either slit-tuning or a single-prism dispersive resonator. Output powers from 6 to14 mW have been measured.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, “Novel diode-pumped infrared tunable laser system for multi-photon microscopy,” Microsc. Res. Tech. 63(1), 23–26 (2004).
    [CrossRef]
  2. G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, “Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser,” Electron. Lett. 43(3), 190–191 (2007).
    [CrossRef]
  3. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bünting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber,” Opt. Express 11(24), 3290–3297 (2003).
    [CrossRef] [PubMed]
  4. G. J. Valentine, J.-M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr(3+):LiSrAlF(6)laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22(21), 1639–1641 (1997).
    [CrossRef]
  5. J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38(4), 360–368 (2002).
    [CrossRef]
  6. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kaertner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express 17(16), 14374–14388 (2009).
    [CrossRef] [PubMed]
  7. A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser,” Opt. Express 12(17), 3928–3933 (2004).
    [CrossRef] [PubMed]
  8. A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibbett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode locking in solid-state lasers,” Opt. Lett. 30(23), 3234–3236 (2005).
    [CrossRef] [PubMed]
  9. A. Agnesi, F. Pirzio, and G. Reali, “Low-threshold femtosecond Nd:glass laser,” Opt. Express 17(11), 9171–9176 (2009).
    [CrossRef] [PubMed]
  10. J. A. Au, D. Kopf, F. Morier-Genoud, M. Moser, and U. Keller, “60-fs pulses from a diode-pumped Nd:glass laser,” Opt. Lett. 22(5), 307–309 (1997).
    [CrossRef] [PubMed]
  11. R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
    [CrossRef]
  12. D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35(6), 912–915 (1996).
    [CrossRef] [PubMed]
  13. A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Compact sub-100-fs Nd:silicate laser,” Opt. Commun. 282(10), 2070–2073 (2009).
    [CrossRef]

2009 (3)

2007 (1)

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, “Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser,” Electron. Lett. 43(3), 190–191 (2007).
[CrossRef]

2005 (2)

2004 (2)

N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, “Novel diode-pumped infrared tunable laser system for multi-photon microscopy,” Microsc. Res. Tech. 63(1), 23–26 (2004).
[CrossRef]

A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser,” Opt. Express 12(17), 3928–3933 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38(4), 360–368 (2002).
[CrossRef]

1997 (2)

1996 (1)

Adomavicius, R.

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, “Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser,” Electron. Lett. 43(3), 190–191 (2007).
[CrossRef]

Agate, B.

J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38(4), 360–368 (2002).
[CrossRef]

Agnesi, A.

A. Agnesi, F. Pirzio, and G. Reali, “Low-threshold femtosecond Nd:glass laser,” Opt. Express 17(11), 9171–9176 (2009).
[CrossRef] [PubMed]

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Compact sub-100-fs Nd:silicate laser,” Opt. Commun. 282(10), 2070–2073 (2009).
[CrossRef]

Aguirre, A. D.

Au, J. A.

Bertulis, K.

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, “Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser,” Electron. Lett. 43(3), 190–191 (2007).
[CrossRef]

Birge, J. R.

Birks, T. A.

Bourquin, S.

Brown, C. T. A.

Bünting, U.

Burns, D.

Choquet, D.

N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, “Novel diode-pumped infrared tunable laser system for multi-photon microscopy,” Microsc. Res. Tech. 63(1), 23–26 (2004).
[CrossRef]

Dallocchio, P.

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Compact sub-100-fs Nd:silicate laser,” Opt. Commun. 282(10), 2070–2073 (2009).
[CrossRef]

Danielius, R.

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, “Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser,” Electron. Lett. 43(3), 190–191 (2007).
[CrossRef]

Deguil, N.

N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, “Novel diode-pumped infrared tunable laser system for multi-photon microscopy,” Microsc. Res. Tech. 63(1), 23–26 (2004).
[CrossRef]

Demirbas, U.

Denisov, I. A.

Fujimoto, J. G.

Giniunas, L.

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, “Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser,” Electron. Lett. 43(3), 190–191 (2007).
[CrossRef]

Golling, M.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Grange, R.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Haiml, M.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Hartl, I.

Hopkins, J.-M.

J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38(4), 360–368 (2002).
[CrossRef]

G. J. Valentine, J.-M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr(3+):LiSrAlF(6)laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22(21), 1639–1641 (1997).
[CrossRef]

Hsiung, P.

Kaertner, F. X.

Keller, U.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38(4), 360–368 (2002).
[CrossRef]

J. A. Au, D. Kopf, F. Morier-Genoud, M. Moser, and U. Keller, “60-fs pulses from a diode-pumped Nd:glass laser,” Opt. Lett. 22(5), 307–309 (1997).
[CrossRef] [PubMed]

D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35(6), 912–915 (1996).
[CrossRef] [PubMed]

Kemp, A. J.

J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38(4), 360–368 (2002).
[CrossRef]

Kennedy, G. T.

Kisel, V. E.

Ko, T. H.

Kolodziejski, L. A.

Kopf, D.

Krainer, L.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Krotkus, A.

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, “Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser,” Electron. Lett. 43(3), 190–191 (2007).
[CrossRef]

Kuleshov, N. V.

Kupchenko, M. I.

Lagatsky, A. A.

Legros, P.

N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, “Novel diode-pumped infrared tunable laser system for multi-photon microscopy,” Microsc. Res. Tech. 63(1), 23–26 (2004).
[CrossRef]

Li, D.

Loza-Alvarez, P.

Matrosov, V. N.

Matrosova, T. A.

Molis, G.

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, “Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser,” Electron. Lett. 43(3), 190–191 (2007).
[CrossRef]

Morier-Genoud, F.

Moser, M.

Mottay, E.

N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, “Novel diode-pumped infrared tunable laser system for multi-photon microscopy,” Microsc. Res. Tech. 63(1), 23–26 (2004).
[CrossRef]

Ostinelli, O.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Paschotta, R.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Petrich, G. S.

Pirzio, F.

A. Agnesi, F. Pirzio, and G. Reali, “Low-threshold femtosecond Nd:glass laser,” Opt. Express 17(11), 9171–9176 (2009).
[CrossRef] [PubMed]

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Compact sub-100-fs Nd:silicate laser,” Opt. Commun. 282(10), 2070–2073 (2009).
[CrossRef]

Pocius, J.

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, “Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser,” Electron. Lett. 43(3), 190–191 (2007).
[CrossRef]

Reali, G.

A. Agnesi, F. Pirzio, and G. Reali, “Low-threshold femtosecond Nd:glass laser,” Opt. Express 17(11), 9171–9176 (2009).
[CrossRef] [PubMed]

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Compact sub-100-fs Nd:silicate laser,” Opt. Commun. 282(10), 2070–2073 (2009).
[CrossRef]

Salin, F.

N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, “Novel diode-pumped infrared tunable laser system for multi-photon microscopy,” Microsc. Res. Tech. 63(1), 23–26 (2004).
[CrossRef]

Sarmani, A. R.

Selivanov, A. G.

Sennaroglu, A.

Sibbett, W.

Spühler, G. J.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35(6), 912–915 (1996).
[CrossRef] [PubMed]

Troshin, A. E.

Valentine, G. J.

J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38(4), 360–368 (2002).
[CrossRef]

G. J. Valentine, J.-M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr(3+):LiSrAlF(6)laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22(21), 1639–1641 (1997).
[CrossRef]

Valster, A.

Wadsworth, W. J.

Weingarten, K. J.

Yumashev, K. V.

Appl. Opt. (1)

Appl. Phys. B (1)

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Electron. Lett. (1)

G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, “Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser,” Electron. Lett. 43(3), 190–191 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38(4), 360–368 (2002).
[CrossRef]

Microsc. Res. Tech. (1)

N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, “Novel diode-pumped infrared tunable laser system for multi-photon microscopy,” Microsc. Res. Tech. 63(1), 23–26 (2004).
[CrossRef]

Opt. Commun. (1)

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Compact sub-100-fs Nd:silicate laser,” Opt. Commun. 282(10), 2070–2073 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Resonator layout. LD: pump laser diode; L1: aspheric lens (8-mm focal); L2: spherical singlet lens (50-mm focal); M1: concave mirror, 50-mm curvature, high-reflectivity (HR) at 1000-1100 nm, high-transmissivity (HT) at 800-810 nm; M2: concave mirror, 100-mm curvature, HR; M3: flat mirror, HR; M4: concave mirror, 75-mm curvature, HR; GTI: negative dispersion mirror; P1, P2: dispersive prisms; OC: output coupler, 30’ wedge; SAM: saturable absorber mirror.

Fig. 2
Fig. 2

Performance of the Nd:silicate laser in cw regime, with the optimum OC (3% transmissivity) and two orthogonal orientations of the laser diode.

Fig. 3
Fig. 3

a) Background-free autocorrelation of the shortest pulse measured (with best fit assuming sech 2 intensity profile) and optical spectrum; b) RF spectrum remarking the absence of instabilities.

Fig. 4
Fig. 4

Autocorrelation of the pulse at 1061 nm (a) and tunability of the single-prism setup (b). In all cases the pulses were nearly transform-limited, with τ × Δν ≈0.33 - 0.37.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1exp[(δ/wG)2]g
Δλeff2g|dx/dλ|wG

Metrics