Abstract

We present Brillouin spectroscopy of YAG-derived optical fibers. It is found that the addition of yttria and alumina both tend to raise the acoustic velocity when added to silica, with the change due to yttria being much weaker. The temperature-dependence of the Stokes’s shift in the YAG-derived fibers is also measured, disclosing a lesser temperature dependence than conventional Ge-doped fibers. These fibers are found experimentally to have a substantially larger acoustic attenuation coefficient relative to that of bulk silica, and assuming a photoelastic constant of amorphous YAG similar to that of pure crystalline YAG, a much-reduced Brillouin gain coefficient as a result. A 40 weight percent yttria and alumina fiber has a Brillouin gain coefficient estimated to be roughly one sixth of pure silica. We also show that the addition of Er to the YAG-derived system decreases the acoustic velocity and broadens the Brillouin spectrum.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
    [CrossRef]
  2. C.-C. Lai, K.-Y. Huang, H.-J. Tsai, K.-Y. Hsu, S.-K. Liu, C.-T. Cheng, K.-D. Ji, C.-P. Ke, S.-R. Lin, and S.-L. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett. 34(15), 2357–2359 (2009).
    [CrossRef] [PubMed]
  3. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [CrossRef] [PubMed]
  4. P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
    [CrossRef]
  5. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in CLEO/QELS2005, Vol. 3 of 2005 Conference on Lasers and Electro-Optics, Paper CThZ3.
  6. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
    [CrossRef] [PubMed]
  7. C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
    [CrossRef]
  8. N. H. Murray, N. K. Bourne, and Z. Rosenberg, “The dynamic compressive strength of aluminas,” J. Appl. Phys. 84(9), 4866–4871 (1998).
    [CrossRef]
  9. O. Yeheskel and O. Tevet, “Elastic moduli of transparent yttria,” J. Am. Ceram. Soc. 82, 136–144 (1999).
    [CrossRef]
  10. P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009).
    [CrossRef]
  11. A. Yeniay, J.-M. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20(8), 1425–1432 (2002).
    [CrossRef]
  12. A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
    [CrossRef]
  13. D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm,” Appl. Opt. 37(21), 4933–4935 (1998).
    [CrossRef]
  14. C. R. Hammond and S. R. Norman, “Silica based binary glass systems – refractive index behavior and composition in optical fibers,” Opt. Quantum Electron. 9(5), 399–409 (1977).
    [CrossRef]
  15. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [CrossRef] [PubMed]
  16. D. Marcuse, Light Transmission Optics (Van Nostrand, 1972), Chap. 8.
  17. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [CrossRef]
  18. C. Headley, J.B. Clayton, W.A. Reed, L. Eskildsen, and P.B. Hansen, “Technique for obtaining a 2.5 dB increase in the stimulated Brillouin scattering threshold of Ge-doped fibers by varying fiber draw tension,” OFC Technical Digest, paper WL25, pp. 186 – 187, 1997.
  19. W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
    [CrossRef]
  20. K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
    [CrossRef]
  21. P. D. Dragic, “Simplified model for effect of Ge doping on silica fiber acoustic properties,” Electron. Lett. 45(5), 256–257 (2009).
    [CrossRef]
  22. C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970).
    [CrossRef]
  23. V. R. Johnson and F. A. Olson, “Photoelastic properties of YAG,” Proc. IEEE 55(5), 709–710 (1967).
    [CrossRef]
  24. G. W. Faris, L. E. Jusinski, and A. P. Hickman, “High-resolution stimulated Brillouin gain spectroscopy in glasses and crystals,” J. Opt. Soc. Am. B 10(4), 587–599 (1993).
    [CrossRef]
  25. F. Detraux and X. Gonze, “Photoelasticity of α-quartz from first principles,” Phys. Rev. B 63(11), 115118 (2001).
    [CrossRef]

2010 (1)

2009 (5)

P. D. Dragic, “Simplified model for effect of Ge doping on silica fiber acoustic properties,” Electron. Lett. 45(5), 256–257 (2009).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

C.-C. Lai, K.-Y. Huang, H.-J. Tsai, K.-Y. Hsu, S.-K. Liu, C.-T. Cheng, K.-D. Ji, C.-P. Ke, S.-R. Lin, and S.-L. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett. 34(15), 2357–2359 (2009).
[CrossRef] [PubMed]

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
[CrossRef]

P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009).
[CrossRef]

2007 (2)

M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
[CrossRef] [PubMed]

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

2002 (1)

2001 (1)

F. Detraux and X. Gonze, “Photoelasticity of α-quartz from first principles,” Phys. Rev. B 63(11), 115118 (2001).
[CrossRef]

1999 (1)

O. Yeheskel and O. Tevet, “Elastic moduli of transparent yttria,” J. Am. Ceram. Soc. 82, 136–144 (1999).
[CrossRef]

1998 (2)

N. H. Murray, N. K. Bourne, and Z. Rosenberg, “The dynamic compressive strength of aluminas,” J. Appl. Phys. 84(9), 4866–4871 (1998).
[CrossRef]

D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm,” Appl. Opt. 37(21), 4933–4935 (1998).
[CrossRef]

1997 (1)

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

1993 (2)

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

G. W. Faris, L. E. Jusinski, and A. P. Hickman, “High-resolution stimulated Brillouin gain spectroscopy in glasses and crystals,” J. Opt. Soc. Am. B 10(4), 587–599 (1993).
[CrossRef]

1986 (1)

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

1984 (1)

1977 (1)

C. R. Hammond and S. R. Norman, “Silica based binary glass systems – refractive index behavior and composition in optical fibers,” Opt. Quantum Electron. 9(5), 399–409 (1977).
[CrossRef]

1972 (1)

1970 (1)

C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970).
[CrossRef]

1967 (1)

V. R. Johnson and F. A. Olson, “Photoelastic properties of YAG,” Proc. IEEE 55(5), 709–710 (1967).
[CrossRef]

Abe, K.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Arai, K.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

Ballato, J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Bonnell, L.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Bourne, N. K.

N. H. Murray, N. K. Bourne, and Z. Rosenberg, “The dynamic compressive strength of aluminas,” J. Appl. Phys. 84(9), 4866–4871 (1998).
[CrossRef]

Chen, X.

Cheng, C.-T.

Crowley, A. M.

Daw, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Delavaux, J.-M.

Demeritt, J. A.

Detraux, F.

F. Detraux and X. Gonze, “Photoelasticity of α-quartz from first principles,” Phys. Rev. B 63(11), 115118 (2001).
[CrossRef]

Dragic, P. D.

P. D. Dragic, “Simplified model for effect of Ge doping on silica fiber acoustic properties,” Electron. Lett. 45(5), 256–257 (2009).
[CrossRef]

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
[CrossRef]

P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009).
[CrossRef]

Dubinskii, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Faris, G. W.

Fleming, J. W.

Foy, P.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Gonze, X.

F. Detraux and X. Gonze, “Photoelasticity of α-quartz from first principles,” Phys. Rev. B 63(11), 115118 (2001).
[CrossRef]

Gray, S.

Hammond, C. R.

C. R. Hammond and S. R. Norman, “Silica based binary glass systems – refractive index behavior and composition in optical fibers,” Opt. Quantum Electron. 9(5), 399–409 (1977).
[CrossRef]

Handa, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

Hawkins, T.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

He, Z.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

Hickman, A. P.

Honda, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

Hotate, K.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

Hsu, K.-Y.

Huang, K.-Y.

Huang, S.-L.

Ishii, Y.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

Jen, C.-K.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Ji, K.-D.

Johnson, V. R.

V. R. Johnson and F. A. Olson, “Photoelastic properties of YAG,” Proc. IEEE 55(5), 709–710 (1967).
[CrossRef]

Jusinski, L. E.

Ke, C.-P.

Kokuoz, B.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Krischer, C.

C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970).
[CrossRef]

Kumata, K.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

Kushibiki, J.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Lai, C.-C.

Li, M. J.

Lin, S.-R.

Liu, A.

Liu, S.-K.

Matthewson, M. J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

McMillen, C.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Murray, N. H.

N. H. Murray, N. K. Bourne, and Z. Rosenberg, “The dynamic compressive strength of aluminas,” J. Appl. Phys. 84(9), 4866–4871 (1998).
[CrossRef]

Namikawa, H.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

Neron, C.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Niklès, M.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Norman, S. R.

C. R. Hammond and S. R. Norman, “Silica based binary glass systems – refractive index behavior and composition in optical fibers,” Opt. Quantum Electron. 9(5), 399–409 (1977).
[CrossRef]

Olson, F. A.

V. R. Johnson and F. A. Olson, “Photoelastic properties of YAG,” Proc. IEEE 55(5), 709–710 (1967).
[CrossRef]

Page, R.

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Rosenberg, Z.

N. H. Murray, N. K. Bourne, and Z. Rosenberg, “The dynamic compressive strength of aluminas,” J. Appl. Phys. 84(9), 4866–4871 (1998).
[CrossRef]

Ruffin, A. B.

Sanamyan, T.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Shang, A.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Small, D. L.

Smith, R. G.

Stolen, R.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Su, Z.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Tevet, O.

O. Yeheskel and O. Tevet, “Elastic moduli of transparent yttria,” J. Am. Ceram. Soc. 82, 136–144 (1999).
[CrossRef]

Thévenaz, L.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Toulouse, J.

Tritt, T. M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Tsai, H.-J.

Walton, D. T.

Wang, J.

Yablon, A. D.

A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
[CrossRef]

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

Yeheskel, O.

O. Yeheskel and O. Tevet, “Elastic moduli of transparent yttria,” J. Am. Ceram. Soc. 82, 136–144 (1999).
[CrossRef]

Yeniay, A.

Zelmon, D. E.

Zenteno, L. A.

Zhang, J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

Zou, W.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

P. D. Dragic, “Simplified model for effect of Ge doping on silica fiber acoustic properties,” Electron. Lett. 45(5), 256–257 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

J. Acoust. Soc. Am. (1)

C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970).
[CrossRef]

J. Am. Ceram. Soc. (2)

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

O. Yeheskel and O. Tevet, “Elastic moduli of transparent yttria,” J. Am. Ceram. Soc. 82, 136–144 (1999).
[CrossRef]

J. Appl. Phys. (3)

N. H. Murray, N. K. Bourne, and Z. Rosenberg, “The dynamic compressive strength of aluminas,” J. Appl. Phys. 84(9), 4866–4871 (1998).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[CrossRef]

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

C. R. Hammond and S. R. Norman, “Silica based binary glass systems – refractive index behavior and composition in optical fibers,” Opt. Quantum Electron. 9(5), 399–409 (1977).
[CrossRef]

Phys. Rev. B (1)

F. Detraux and X. Gonze, “Photoelasticity of α-quartz from first principles,” Phys. Rev. B 63(11), 115118 (2001).
[CrossRef]

Proc. IEEE (1)

V. R. Johnson and F. A. Olson, “Photoelastic properties of YAG,” Proc. IEEE 55(5), 709–710 (1967).
[CrossRef]

Proc. SPIE (1)

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
[CrossRef]

Other (3)

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in CLEO/QELS2005, Vol. 3 of 2005 Conference on Lasers and Electro-Optics, Paper CThZ3.

C. Headley, J.B. Clayton, W.A. Reed, L. Eskildsen, and P.B. Hansen, “Technique for obtaining a 2.5 dB increase in the stimulated Brillouin scattering threshold of Ge-doped fibers by varying fiber draw tension,” OFC Technical Digest, paper WL25, pp. 186 – 187, 1997.

D. Marcuse, Light Transmission Optics (Van Nostrand, 1972), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup used to acquire the spontaneous Brillouin spectra. A narrow linewidth external cavity laser diode is amplified and sent through a circulator and into the test fiber (Port 2). The back-reflected Brillouin and local oscillator signals then pass into Port 3, are optically pre-amplified, and finally heterodyned on a fast detector. An electrical spectrum analyzer measured the spectra.

Fig. 2
Fig. 2

Refractive index profile (RIP), measured at 903 nm, showing orthogonal linescans across the YAG-derived fiber. The core is found to have a high degree of circularity. The shape can be attributed to the silica in-diffusion process.

Fig. 3
Fig. 3

Brillouin spectrum of the undoped YAG-derived optical fiber provided as an example spectrum. The signal is weak and noisy, but a distinct Lorentzian lineshape is still observed. The spectrum was taken at 1534 nm. The Lorentzian fit is also shown (dashed line).

Fig. 4
Fig. 4

Brillouin gain spectra of the 0.25 weight % Er:YAG-derived fiber measured at a wavelength of 1555 nm at temperatures of 23 °C and 100 °C. Also visible is the gain spectrum that of the circulator (located between 10.8 GHz and 11 GHz), which is made from standard single mode fiber (SMF). A small segment of the circulator fiber was placed in the thermal chamber as a control.

Fig. 5
Fig. 5

Acoustic velocity vs. ЦYAG content (mol%) modeled using Eq. (1) and the deduced density and acoustic velocity for pure ЦYAG. The experimental data points are also shown on the plot.

Fig. 6
Fig. 6

Index difference at core center vs. ЦYAG content (mol%) fit using the deduced density. We obtain ny = 1.868 for the fit. The data points from Table 1 are also shown on the plot.

Fig. 7
Fig. 7

Brillouin spectral width vs. ЦYAG content (mol%) fit using the deduced density ρy . We obtain αy = 10.4 × 104 m−1 for the fit. The data points from Table 1 are also shown on the plot.

Fig. 8
Fig. 8

Calculated Brillouin gain coefficient vs. ЦYAG content (mol%) using the photoelastic constant of crystalline YAG.

Tables (3)

Tables Icon

Table 1 Summary Properties of YAG-Derived Fibers

Tables Icon

Table 2 Average Fiber Dopant Composition in Various Units

Tables Icon

Table 3 Comparison of the Observed Acoustic Velocity with That of Pure Silica

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Va=VyVyVs+m(1VyVs),
m=MyMsρs[YAG/100]ρy+[YAG/100](MyMsρsρy),

Metrics