Abstract

Light scattering by an array of alternating electric and magnetic nanoparticles is analyzed in detailed. Specific geometrical conditions are derived, where such an array behaves like double-negative particles, leading to a suppression of the backscattered intensity. This effect is very robust and could be used to produce double-negative metamaterials using single-negative components.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Exception for the zero-forward-scattering theory

B. García-Cámara, F. González, F. Moreno, and J. M. Saiz
J. Opt. Soc. Am. A 25(11) 2875-2878 (2008)

Linear polarization degree for detecting magnetic properties of small particles

Braulio García-Cámara, Francisco González, and Fernando Moreno
Opt. Lett. 35(23) 4084-4086 (2010)

Light scattering resonances in small particles with electric and magnetic properties

B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen
J. Opt. Soc. Am. A 25(2) 327-334 (2008)

References

  • View by:
  • |
  • |
  • |

  1. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
    [Crossref] [PubMed]
  2. X. Liu and Q. Huo, “A washing-free and amplification-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering,” J. Immunol. Methods 349(1-2), 38–44 (2009).
    [Crossref] [PubMed]
  3. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref] [PubMed]
  4. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlesing,” Nat. Photonics 3(7), 388–394 (2009).
    [Crossref]
  5. M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
    [Crossref]
  6. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007).
    [Crossref] [PubMed]
  7. E. S. Day, J. G. Morton, and J. L. West, “Nanoparticles for thermal cancer therapy,” J. Biomech. Eng. 131(7), 074001–074005 (2009).
    [Crossref] [PubMed]
  8. S. S. Acimovic, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon Near-Fields Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” Nano Lett. 3, 1231–1237 (2009).
  9. M. Kerker, D.-S. Wang, and C.L. Giles, “Electromagnetic scattering by magnetic particles,” J. Opt. Soc. Am 73, 765–767 (1983).
    [Crossref]
  10. B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Nanoparticles with unconventional scattering properties: Size effects,” Opt. Commun. 283(3), 490–496 (2010).
    [Crossref]
  11. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
    [Crossref] [PubMed]
  12. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  13. V. Shalaev, “Optical negative-index metamaterial,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  14. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
    [Crossref] [PubMed]
  15. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  16. N.-H. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80(11), 115123–115131 (2009).
    [Crossref]
  17. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  18. C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectrc spherical particles embedded in a matrix,” IEEE Trans. Antenn. Propag. 51(10), 2596–2603 (2003).
    [Crossref]
  19. B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25(2), 327–334 (2008).
    [Crossref]
  20. B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward scattering theory,” J. Opt. Soc. Am. A 25(11), 2875–2878 (2008).
    [Crossref]
  21. C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metalfilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
    [Crossref]
  22. N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
    [Crossref] [PubMed]
  23. A. Alù and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17(7), 5723–5730 (2009).
    [Crossref] [PubMed]
  24. C. Bohren, and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983)
  25. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [Crossref]
  26. J. D. Jackson, Classical Electrodynamics, (Wiley, 1975).
  27. G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).
    [Crossref]
  28. P. Chýlek and R. G. Pinnick, “Nonunitarity of the light scattering approximations,” Appl. Opt. 18(8), 1123–1124 (1979).
    [Crossref] [PubMed]
  29. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
    [Crossref]
  30. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]

2010 (1)

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Nanoparticles with unconventional scattering properties: Size effects,” Opt. Commun. 283(3), 490–496 (2010).
[Crossref]

2009 (9)

E. S. Day, J. G. Morton, and J. L. West, “Nanoparticles for thermal cancer therapy,” J. Biomech. Eng. 131(7), 074001–074005 (2009).
[Crossref] [PubMed]

S. S. Acimovic, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon Near-Fields Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” Nano Lett. 3, 1231–1237 (2009).

X. Liu and Q. Huo, “A washing-free and amplification-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering,” J. Immunol. Methods 349(1-2), 38–44 (2009).
[Crossref] [PubMed]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlesing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]

N.-H. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80(11), 115123–115131 (2009).
[Crossref]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17(7), 5723–5730 (2009).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

2008 (5)

B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25(2), 327–334 (2008).
[Crossref]

B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward scattering theory,” J. Opt. Soc. Am. A 25(11), 2875–2878 (2008).
[Crossref]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

2007 (3)

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007).
[Crossref] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

V. Shalaev, “Optical negative-index metamaterial,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

2006 (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

2005 (1)

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metalfilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

2003 (1)

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectrc spherical particles embedded in a matrix,” IEEE Trans. Antenn. Propag. 51(10), 2596–2603 (2003).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1994 (2)

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
[Crossref]

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).
[Crossref]

1983 (1)

M. Kerker, D.-S. Wang, and C.L. Giles, “Electromagnetic scattering by magnetic particles,” J. Opt. Soc. Am 73, 765–767 (1983).
[Crossref]

1979 (1)

Acimovic, S. S.

S. S. Acimovic, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon Near-Fields Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” Nano Lett. 3, 1231–1237 (2009).

Alù, A.

Baker-Jarvis, J.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectrc spherical particles embedded in a matrix,” IEEE Trans. Antenn. Propag. 51(10), 2596–2603 (2003).
[Crossref]

Bohren, C. F.

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).
[Crossref]

Carminati, R.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Catchpole, K. R.

Christ, A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[Crossref] [PubMed]

Chýlek, P.

Day, E. S.

E. S. Day, J. G. Morton, and J. L. West, “Nanoparticles for thermal cancer therapy,” J. Biomech. Eng. 131(7), 074001–074005 (2009).
[Crossref] [PubMed]

Dienstfrey, A.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metalfilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

Draine, B. T.

Dunbar, L. A.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]

Eckert, R.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]

Economou, E. N.

N.-H. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80(11), 115123–115131 (2009).
[Crossref]

Ekinci, Y.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[Crossref] [PubMed]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17(7), 5723–5730 (2009).
[Crossref] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

Flatau, P. J.

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Foteinopoulou, S.

N.-H. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80(11), 115123–115131 (2009).
[Crossref]

Fuller, K. A.

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).
[Crossref]

García-Cámara, B.

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Giles, C.L.

M. Kerker, D.-S. Wang, and C.L. Giles, “Electromagnetic scattering by magnetic particles,” J. Opt. Soc. Am 73, 765–767 (1983).
[Crossref]

Gippius, N. A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[Crossref] [PubMed]

González, F.

González, M. U.

S. S. Acimovic, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon Near-Fields Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” Nano Lett. 3, 1231–1237 (2009).

Greffet, J.-J.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Grenet, E.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]

Guillaumée, M.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]

Halas, N. J.

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
[Crossref] [PubMed]

Henkel, C.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Holloway, C. L.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metalfilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectrc spherical particles embedded in a matrix,” IEEE Trans. Antenn. Propag. 51(10), 2596–2603 (2003).
[Crossref]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Huo, Q.

X. Liu and Q. Huo, “A washing-free and amplification-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering,” J. Immunol. Methods 349(1-2), 38–44 (2009).
[Crossref] [PubMed]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlesing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Kabos, P.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectrc spherical particles embedded in a matrix,” IEEE Trans. Antenn. Propag. 51(10), 2596–2603 (2003).
[Crossref]

Kafesaki, M.

N.-H. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80(11), 115123–115131 (2009).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlesing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Kerker, M.

M. Kerker, D.-S. Wang, and C.L. Giles, “Electromagnetic scattering by magnetic particles,” J. Opt. Soc. Am 73, 765–767 (1983).
[Crossref]

Koschny, T.

N.-H. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80(11), 115123–115131 (2009).
[Crossref]

Kreuzer, M. P.

S. S. Acimovic, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon Near-Fields Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” Nano Lett. 3, 1231–1237 (2009).

Kuester, E. F.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metalfilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectrc spherical particles embedded in a matrix,” IEEE Trans. Antenn. Propag. 51(10), 2596–2603 (2003).
[Crossref]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lee, H.

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, X.

X. Liu and Q. Huo, “A washing-free and amplification-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering,” J. Immunol. Methods 349(1-2), 38–44 (2009).
[Crossref] [PubMed]

Liu, Z.

Martin, O. J. F.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[Crossref] [PubMed]

Mirin, N. A.

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
[Crossref] [PubMed]

Mohamed, M. A.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metalfilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

Moreno, F.

Morton, J. G.

E. S. Day, J. G. Morton, and J. L. West, “Nanoparticles for thermal cancer therapy,” J. Biomech. Eng. 131(7), 074001–074005 (2009).
[Crossref] [PubMed]

Mulholland, G. W.

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).
[Crossref]

Ozbay, E.

N.-H. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80(11), 115123–115131 (2009).
[Crossref]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Pinnick, R. G.

Polman, A.

Quidant, R.

S. S. Acimovic, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon Near-Fields Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” Nano Lett. 3, 1231–1237 (2009).

Saiz, J. M.

Santschi, Ch.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Shalaev, V.

V. Shalaev, “Optical negative-index metamaterial,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Shen, N.-H.

N.-H. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80(11), 115123–115131 (2009).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Soukoulis, C. M.

N.-H. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80(11), 115123–115131 (2009).
[Crossref]

Stanley, R. P.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]

Sun, C.

Tikhodeev, S. G.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[Crossref] [PubMed]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlesing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Videen, G.

Vigoureux, J. M.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Wang, D.-S.

M. Kerker, D.-S. Wang, and C.L. Giles, “Electromagnetic scattering by magnetic particles,” J. Opt. Soc. Am 73, 765–767 (1983).
[Crossref]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

West, J. L.

E. S. Day, J. G. Morton, and J. L. West, “Nanoparticles for thermal cancer therapy,” J. Biomech. Eng. 131(7), 074001–074005 (2009).
[Crossref] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Xiong, Y.

Zhang, X.

Acc. Chem. Res. (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectrc spherical particles embedded in a matrix,” IEEE Trans. Antenn. Propag. 51(10), 2596–2603 (2003).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metalfilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

J. Biomech. Eng. (1)

E. S. Day, J. G. Morton, and J. L. West, “Nanoparticles for thermal cancer therapy,” J. Biomech. Eng. 131(7), 074001–074005 (2009).
[Crossref] [PubMed]

J. Immunol. Methods (1)

X. Liu and Q. Huo, “A washing-free and amplification-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering,” J. Immunol. Methods 349(1-2), 38–44 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am (1)

M. Kerker, D.-S. Wang, and C.L. Giles, “Electromagnetic scattering by magnetic particles,” J. Opt. Soc. Am 73, 765–767 (1983).
[Crossref]

J. Opt. Soc. Am. A (3)

Langmuir (1)

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).
[Crossref]

Nano Lett. (3)

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9(3), 1255–1259 (2009).
[Crossref] [PubMed]

S. S. Acimovic, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon Near-Fields Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” Nano Lett. 3, 1231–1237 (2009).

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlesing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

V. Shalaev, “Optical negative-index metamaterial,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Opt. Commun. (2)

B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Nanoparticles with unconventional scattering properties: Size effects,” Opt. Commun. 283(3), 490–496 (2010).
[Crossref]

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

N.-H. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80(11), 115123–115131 (2009).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Science (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Other (2)

C. Bohren, and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983)

J. D. Jackson, Classical Electrodynamics, (Wiley, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The different array configurations under study. The dark particles are electric (ε = −2.01, μ = 1) and the yellow ones are magnetic (ε = −2.01, μ = 1). Both particles placed on the scattering plane (left column) or on a normal plane (right column) are considered. The particle radius is R = 0.01λ and D = 0.5λ.

Fig. 2
Fig. 2

Scattering patterns, for both incident polarizations, corresponding to the different arrays shown in Fig. 1.

Fig. 3
Fig. 3

Comparison of the scattering patterns for an isolated particle (R = 0.01λ) with optical constants (ε = μ = −2.01) and for an array of electric (ε = −2.01, μ = 1) and magnetic (ε = 1, μ = −2.01) particles (R = 0.01λ) with a spatial distribution indicated in Fig. 1f). Also the scattering patterns for an electric (ε = −2.01,μ = 1) and a magnetic (ε = 1, μ = −2.01) dipole has been included. The incident wave is polarized with the electric field parallel to the scattering plane (P polarization).

Fig. 4
Fig. 4

Polar distribution of light scattering by an array similar to that described in Fig. 1d) for several distances between the particles. Both polarizations, parallel (P) and perpendicular (S) to the scattering plane, are considered. The distances are expressed in wavelength units.

Fig. 5
Fig. 5

Polar distribution of light scattering by an array similar to that described in Fig. 1f) for several distances between the particles. Both polarizations, parallel (P) and perpendicular (S) to the scattering plane, are considered. The distances are expressed in wavelength units.

Fig. 6
Fig. 6

Scattered intensity for different rotations of the original array around an axis parallel to the incident direction. The incident wave has S polarization. The rotation of the system is described in the inset.

Fig. 7
Fig. 7

Schematic of an array with 16 electric (dark) and magnetic (yellow) nanoparticles (R = 0.01λ) following the alternate configuration.

Fig. 8
Fig. 8

Scattering patterns, for both polarizations, corresponding to the 16-particle array configuration shown in Fig. 7. The distances between particles D are in wavelength units

Fig. 9
Fig. 9

Scattered intensity for an alternate array of 16 particles (D = 0.25λ) a function of the scattering angle and for different rotations of the system around an axis parallel to the incident direction. The incident wave is considered with S polarization.

Fig. 10
Fig. 10

Comparison of the scattered intensity for a 16-particle array with and without placing errors. Different kinds of errors are considered a) changing an electric particle for a magnetic one, b) displacing one of the particles of the array and c) eliminating one or more particles of the array. P- polarization is used. The distance between the particles is D = 0.25λ.

Fig. 11
Fig. 11

Scattered intensity as a function of the scattering angle for a system composed of two arrays like in Fig. 7, on top of each other. The incident field is S polarized and different distances between the particles (D) and layers (d), expressed in wavelength units, are considered.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

αEεpεmεp+2εmαHμpμmμp+2μm.
p=ε0αEE0m=αHH0,
Ei=jiaijαEEj+bijαE(Ejnji)njidij(μoε0)12αH(nji×Hj)Hi=jiaijαHHj+bijαH(Hjnji)njidij(εoμ0)12αE(nji×Ej)
aij=14πeikrijrij(k21rij2+ikrij)bij=14πeikrijrij(k2+3rij23ikrij)dij=14πeikrijrij(k2+ikrij),
(EiHi)=(EpwHpw)[IM]1

Metrics