Abstract

Based on the excitation of surface plasmon polaritons (SPPs), we analytically and numerically investigate the transmission response in metal-dielectric-metal (MDM) plasmonic waveguides with a side coupled nanocavity (SCNC). By filling the nanocavity with a Kerr nonlinear medium, the position of the resonant dip in the transmission spectrum can be tuned by the incident light intensity. The oscillation of a Fabry-Perot nanocavity formed by incorporating a finite length of the same Kerr nonlinear media into the MDM waveguide acts as a background for the transmission response of the system and induces a sharp and asymmetric response line shape. As a result, the wavelength shift required for the plasmonic device to be switched from the maximum to the minimum transmission can be reduced by half in a structure less than 400 nm long. Such an effect may be potentially applied to constructing SPP-based all-optical switching with low power threshold at nanoscale.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, Optical bistability: Controlling Light with Light, (Academic, New York, 1985).
  2. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
    [CrossRef]
  3. X. S. Lin, J. H. Yan, L. J. Wu, and S. Lan, “High transmission contrast for single resonator based all-optical diodes with pump-assisting,” Opt. Express 16(25), 20949–20954 (2008).
    [CrossRef] [PubMed]
  4. Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16(12), 8421–8426 (2008).
    [CrossRef] [PubMed]
  5. B. Wang and G. P. Wang, “Plasmon bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
    [CrossRef]
  6. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  7. C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).
    [CrossRef] [PubMed]
  8. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
    [CrossRef] [PubMed]
  9. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [CrossRef]
  10. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
    [CrossRef]
  11. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
    [CrossRef]
  12. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
    [CrossRef] [PubMed]
  13. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [CrossRef] [PubMed]
  14. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
    [CrossRef] [PubMed]
  15. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17(13), 10757–10766 (2009).
    [CrossRef] [PubMed]
  16. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
    [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids, (Academic, Boston, 1985).
  18. A. Taflove, and S. C. Hagness, Computational Electrodynamics (Artech House, Norwood, MA, 2000), In this paper, a commercial software developed by Rsoft Design Group ( http://www.rsoftdesign.com ) is used for nonlinear FDTD simulation.
  19. R. W. Boyd, Nonlinear Optics, (Academic, New York, 1992)
  20. H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feekback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
    [CrossRef]
  21. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [CrossRef] [PubMed]
  22. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908 (2002).
    [CrossRef]
  23. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
    [CrossRef] [PubMed]
  24. H. A. Haus, Wave and Fields in Optoelectronics, (Prentice-Hall, Englewood Cliffs, NJ. 1984).

2009

2008

2007

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

2006

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
[CrossRef] [PubMed]

2005

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

B. Wang and G. P. Wang, “Plasmon bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

2002

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908 (2002).
[CrossRef]

2000

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

1992

H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feekback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[CrossRef]

1969

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Brongersma, M. L.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

Chen, C.

Deng, Y.

Ding, C.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Dong, X. C.

Du, C. L.

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Fan, S.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908 (2002).
[CrossRef]

Fukui, M.

Gao, H. T.

Gong, Q.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Haraguchi, M.

Haus, H. A.

H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feekback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[CrossRef]

Hosseini, A.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

Hu, X.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Huang, X. G.

Jiang, P.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Lai, Y.

H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feekback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[CrossRef]

Lan, S.

Lee, R. K.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

Li, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

Lin, X. S.

Liu, L.

Lu, Y.

Luo, X. G.

Massoud, Y.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

Matsuzaki, Y.

Min, C.

Ming, H.

Nakagaki, M.

Ning, T.

Okamoto, T.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pollard, R.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Qiu, M.

Shen, Y.

Shi, H. F.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Veronis, G.

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17(13), 10757–10766 (2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

Wang, B.

B. Wang and G. P. Wang, “Plasmon bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[CrossRef]

Wang, C. T.

Wang, G. P.

Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16(12), 8421–8426 (2008).
[CrossRef] [PubMed]

B. Wang and G. P. Wang, “Plasmon bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[CrossRef]

Wang, P.

Wu, L. J.

Wurtz, G. A.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Xiao, S.

Xu, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

Yan, J. H.

Yang, G.

Yang, H.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Yariv, A.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

Yu, Z.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

Zayats, A. V.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Zhou, Y.

Appl. Phys. Lett.

B. Wang and G. P. Wang, “Plasmon bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[CrossRef]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908 (2002).
[CrossRef]

IEEE J. Quantum Electron.

H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feekback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[CrossRef]

Nat. Photonics

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Phys. Rev. B

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other

H. M. Gibbs, Optical bistability: Controlling Light with Light, (Academic, New York, 1985).

E. D. Palik, Handbook of Optical Constants of Solids, (Academic, Boston, 1985).

A. Taflove, and S. C. Hagness, Computational Electrodynamics (Artech House, Norwood, MA, 2000), In this paper, a commercial software developed by Rsoft Design Group ( http://www.rsoftdesign.com ) is used for nonlinear FDTD simulation.

R. W. Boyd, Nonlinear Optics, (Academic, New York, 1992)

H. A. Haus, Wave and Fields in Optoelectronics, (Prentice-Hall, Englewood Cliffs, NJ. 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Inset is the schematic of the structure which is divided into three regions by two white dashed lines. (a) Transmission spectra of the MDM waveguide with the SCNC at two different incident intensities. The geometric parameters of the structure are: wo = 50 nm, L = 100nm, d = 14 nm, wt = 30 nm. (b) The transmission contrast ratio between the two incident light intensities as a function of the incident wavelength.

Fig. 2
Fig. 2

(a) Transmission spectra of the structure with different width of the MDM waveguide at Io = 1 × 10−6 W/μm2. Other geometric parameters of the structure are: wo = 50 nm, L = 100nm, d = 14 nm. (b) Transmission spectra normalized to Tmin . Inset shows Tmin as a function of d.

Fig. 3
Fig. 3

Top inset is the schematic of the combined structure. (a) Theoretical transmission spectra of the device calculated from Eq. (5) (black, red and blue lines). The magenta line represents the response from the background F-P oscillation [from Eq. (4)] without the SCNC. (b) Transmission spectra with two different wo obtained by FDTD simulation at incident intensity: Io = 1 × 10−6 W/μm2 The geometric parameters of the structure are: h = 320 nm, wt = 30 nm, d = 14 nm.

Fig. 4
Fig. 4

(a) Transmission spectra at incident intensities: Io = 1 × 10−6 W/μm2 (black), I1 = 1.6 W/μm2 (red). The geometric parameters of the structure are: h = 320 nm, wt = 30 nm, d = 14 nm. (b) Transmission contrast ratio between the two different incident light intensities. (c) Spatial evolutions of the magnetic field profile (at λo = 860 nm) at two different incident intensities. The signal light is incident from the left-hand side.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T = ( ω ω o ) 2 + ( 1 τ o ) 2 ( ω ω o ) 2 + ( 1 τ o + 1 τ e ) 2
Δ ϕ = 4 π Re ( n e f f ) L λ o
tanh ( n e f f 2 ε d w o π / λ o ) = ε d n e f f 2 ε m ε m n e f f 2 ε d
T F P = | r 2 ( λ ) 1 cos Δ ϕ 2 i sin Δ ϕ 2 r 2 ( λ ) ( cos Δ ϕ 2 + i sin Δ ϕ 2 ) | 2
T = | [ r 2 ( λ ) 1 ] ( ω ω o + i 1 τ o ) ( ω ω o + i 1 τ e + i 1 τ o ) ( cos Δ ϕ 2 i sin Δ ϕ 2 ) ( ω ω o i 1 τ e + i 1 τ o ) [ r 2 ( λ ) cos Δ ϕ 2 + i r 2 ( λ ) sin Δ ϕ 2 ] 2 i r ( λ ) 1 τ e | 2

Metrics