Abstract

Orbital angular momentum (OAM) of a helical beam is of great interests in the high density optical communication due to its infinite number of eigen-states. In this paper, an experimental setup is realized to the information encoding and decoding on the OAM eigen-states. A hologram designed by the iterative method is used to generate the helical beams, and a Michelson interferometer with two Porro prisms is used for the superposition of two helical beams. The experimental results of the collinear superposition of helical beams and their OAM eigen-states detection are presented.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [CrossRef] [PubMed]
  2. J. Courtial, R. Zambrini, M. R. Dennis, and M. Vasnetsov, “Angular momentum of optical vortex arrays,” Opt. Express 14(2), 938–949 (2006).
    [CrossRef] [PubMed]
  3. C. Gao, G. Wei, and H. Weber, “Orbital angular momentum of the beam and the second order intensity moments,” Sci. China A 43(12), 1306–1311 (2000).
    [CrossRef]
  4. M. V. Vasnetsov, J. P. Torres, D. V. Petrov, and L. Torner, “Observation of the orbital angular momentum spectrum of a light beam,” Opt. Lett. 28(23), 2285–2287 (2003).
    [CrossRef] [PubMed]
  5. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [CrossRef] [PubMed]
  6. C. López-Mariscal, J. C. Gutiérrez-Vega, G. Milne, and K. Dholakia, “Orbital angular momentum transfer in helical Mathieu beams,” Opt. Express 14(9), 4182–4187 (2006).
    [CrossRef] [PubMed]
  7. Z. Bouchal and R. Celechovsky, “Mixed vortex states of light as information carriers,” J. Opt. Soc. Am. A 21, 1192–1197 (2004).
  8. J. Lin, X. C. Yuan, S. H. Tao, and R. E. Burge, “Collinear superposition of multiple helical beams generated by a single azimuthally modulated phase-only element,” Opt. Lett. 30(24), 3266–3268 (2005).
    [CrossRef] [PubMed]
  9. J. Lin, X. C. Yuan, S. H. Tao, and R. E. Burge, “Synthesis of multiple collinear helical modes generated by a phase-only element,” J. Opt. Soc. Am. A 23(5), 1214–1218 (2006).
    [CrossRef]
  10. Y. D. Liu, C. Q. Gao, M. W. Gao, X. Q. Qi, and H. Weber, “Superposition and detection of two helical beams for optical orbital angular momentum communication,” Opt. Commun. 281(14), 3636–3639 (2008).
    [CrossRef]
  11. C. Tamm, “Frequency locking of two transverse optical modes of a laser,” Phys. Rev. A 38(11), 5960–5963 (1988).
    [CrossRef] [PubMed]
  12. C. Tamm and C. O. Weiss, “Bistability and optical switching of spatial patterns in a laser,” J. Opt. Soc. Am. B 7(6), 1034–1038 (1990).
    [CrossRef]
  13. M. W. Beijersbergen and L. Allen, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
    [CrossRef]
  14. C. Q. Gao, G. H. Wei, and H. Weber, “Generation of the stigmatic beam with orbital angular momentum,” Chin. Phys. Lett. 18(6), 771–773 (2001).
    [CrossRef]
  15. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994).
    [CrossRef]
  16. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12(15), 3548–3553 (2004).
    [CrossRef] [PubMed]
  17. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992).
    [CrossRef] [PubMed]
  18. V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
    [CrossRef]
  19. S. C. Chu, C. S. Yang, and K. Otsuka, “Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer,” Opt. Express 16(24), 19934–19949 (2008).
    [CrossRef] [PubMed]
  20. S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).
  21. S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51, 761–773 (2004).
  22. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the Orbital Angular Momentum of a Single Photon,” Phys. Rev. Lett. 88(25), 1–4 (2002).
    [CrossRef]
  23. B. Jassemnejad, A. Bohannan, J. Lekkl, and K. Welland, “Mode sorter and detector based on photon orbital angular momentum,” Opt. Eng. 47(5), 1–5 (2008).
    [CrossRef]
  24. S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, and J. Turunen, “Measuring the light field orbital angular momentum using DOE,” Opt. Mem. Neur. Net. 10, 241–255 (2001).
  25. R. Zambrini and S. M. Barnett, “Angular momentum of multimode and polarization patterns,” Opt. Express 15(23), 15214–15227 (2007).
    [CrossRef] [PubMed]
  26. Y. D. Liu, C. Q. Gao, and X. Q. Qi, “Field rotation and polarization properties of the Porro prism,” J. Opt. Soc. Am. A 26(5), 1157–1160 (2009).
    [CrossRef]

2009

2008

S. C. Chu, C. S. Yang, and K. Otsuka, “Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer,” Opt. Express 16(24), 19934–19949 (2008).
[CrossRef] [PubMed]

B. Jassemnejad, A. Bohannan, J. Lekkl, and K. Welland, “Mode sorter and detector based on photon orbital angular momentum,” Opt. Eng. 47(5), 1–5 (2008).
[CrossRef]

Y. D. Liu, C. Q. Gao, M. W. Gao, X. Q. Qi, and H. Weber, “Superposition and detection of two helical beams for optical orbital angular momentum communication,” Opt. Commun. 281(14), 3636–3639 (2008).
[CrossRef]

2007

2006

2005

2004

2003

2002

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the Orbital Angular Momentum of a Single Photon,” Phys. Rev. Lett. 88(25), 1–4 (2002).
[CrossRef]

2001

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, and J. Turunen, “Measuring the light field orbital angular momentum using DOE,” Opt. Mem. Neur. Net. 10, 241–255 (2001).

C. Q. Gao, G. H. Wei, and H. Weber, “Generation of the stigmatic beam with orbital angular momentum,” Chin. Phys. Lett. 18(6), 771–773 (2001).
[CrossRef]

2000

C. Gao, G. Wei, and H. Weber, “Orbital angular momentum of the beam and the second order intensity moments,” Sci. China A 43(12), 1306–1311 (2000).
[CrossRef]

1994

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

1993

M. W. Beijersbergen and L. Allen, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[CrossRef]

1992

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992).
[CrossRef] [PubMed]

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

1990

1988

C. Tamm, “Frequency locking of two transverse optical modes of a laser,” Phys. Rev. A 38(11), 5960–5963 (1988).
[CrossRef] [PubMed]

Allen, L.

M. W. Beijersbergen and L. Allen, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Barnett, S. M.

Bazhenov, V. Y.

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[CrossRef]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

M. W. Beijersbergen and L. Allen, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Bohannan, A.

B. Jassemnejad, A. Bohannan, J. Lekkl, and K. Welland, “Mode sorter and detector based on photon orbital angular momentum,” Opt. Eng. 47(5), 1–5 (2008).
[CrossRef]

Bouchal, Z.

Burge, R. E.

Celechovsky, R.

Chu, S. C.

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

Courtial, J.

Dennis, M. R.

Dholakia, K.

Franke-Arnold, S.

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[CrossRef] [PubMed]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the Orbital Angular Momentum of a Single Photon,” Phys. Rev. Lett. 88(25), 1–4 (2002).
[CrossRef]

Gao, C.

C. Gao, G. Wei, and H. Weber, “Orbital angular momentum of the beam and the second order intensity moments,” Sci. China A 43(12), 1306–1311 (2000).
[CrossRef]

Gao, C. Q.

Y. D. Liu, C. Q. Gao, and X. Q. Qi, “Field rotation and polarization properties of the Porro prism,” J. Opt. Soc. Am. A 26(5), 1157–1160 (2009).
[CrossRef]

Y. D. Liu, C. Q. Gao, M. W. Gao, X. Q. Qi, and H. Weber, “Superposition and detection of two helical beams for optical orbital angular momentum communication,” Opt. Commun. 281(14), 3636–3639 (2008).
[CrossRef]

C. Q. Gao, G. H. Wei, and H. Weber, “Generation of the stigmatic beam with orbital angular momentum,” Chin. Phys. Lett. 18(6), 771–773 (2001).
[CrossRef]

Gao, M. W.

Y. D. Liu, C. Q. Gao, M. W. Gao, X. Q. Qi, and H. Weber, “Superposition and detection of two helical beams for optical orbital angular momentum communication,” Opt. Commun. 281(14), 3636–3639 (2008).
[CrossRef]

Gibson, G.

Gutiérrez-Vega, J. C.

Heckenberg, N. R.

Jassemnejad, B.

B. Jassemnejad, A. Bohannan, J. Lekkl, and K. Welland, “Mode sorter and detector based on photon orbital angular momentum,” Opt. Eng. 47(5), 1–5 (2008).
[CrossRef]

Jefimovs, K.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51, 761–773 (2004).

Khonina, S. N.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51, 761–773 (2004).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, and J. Turunen, “Measuring the light field orbital angular momentum using DOE,” Opt. Mem. Neur. Net. 10, 241–255 (2001).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

Kotlyar, V. V.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51, 761–773 (2004).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, and J. Turunen, “Measuring the light field orbital angular momentum using DOE,” Opt. Mem. Neur. Net. 10, 241–255 (2001).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

Leach, J.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the Orbital Angular Momentum of a Single Photon,” Phys. Rev. Lett. 88(25), 1–4 (2002).
[CrossRef]

Lekkl, J.

B. Jassemnejad, A. Bohannan, J. Lekkl, and K. Welland, “Mode sorter and detector based on photon orbital angular momentum,” Opt. Eng. 47(5), 1–5 (2008).
[CrossRef]

Lin, J.

Liu, Y. D.

Y. D. Liu, C. Q. Gao, and X. Q. Qi, “Field rotation and polarization properties of the Porro prism,” J. Opt. Soc. Am. A 26(5), 1157–1160 (2009).
[CrossRef]

Y. D. Liu, C. Q. Gao, M. W. Gao, X. Q. Qi, and H. Weber, “Superposition and detection of two helical beams for optical orbital angular momentum communication,” Opt. Commun. 281(14), 3636–3639 (2008).
[CrossRef]

López-Mariscal, C.

McDuff, R.

Milne, G.

Miyaji, G.

Miyanaga, N.

Nakatsuka, M.

Otsuka, K.

Paakkonen, P.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, and J. Turunen, “Measuring the light field orbital angular momentum using DOE,” Opt. Mem. Neur. Net. 10, 241–255 (2001).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

Padgett, M. J.

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[CrossRef] [PubMed]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the Orbital Angular Momentum of a Single Photon,” Phys. Rev. Lett. 88(25), 1–4 (2002).
[CrossRef]

Pas’ko, V.

Petrov, D. V.

Qi, X. Q.

Y. D. Liu, C. Q. Gao, and X. Q. Qi, “Field rotation and polarization properties of the Porro prism,” J. Opt. Soc. Am. A 26(5), 1157–1160 (2009).
[CrossRef]

Y. D. Liu, C. Q. Gao, M. W. Gao, X. Q. Qi, and H. Weber, “Superposition and detection of two helical beams for optical orbital angular momentum communication,” Opt. Commun. 281(14), 3636–3639 (2008).
[CrossRef]

Simonen, J.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

Smith, C. P.

Soifer, V. A.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51, 761–773 (2004).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, and J. Turunen, “Measuring the light field orbital angular momentum using DOE,” Opt. Mem. Neur. Net. 10, 241–255 (2001).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

Soskin, M. S.

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[CrossRef]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Sueda, K.

Tamm, C.

C. Tamm and C. O. Weiss, “Bistability and optical switching of spatial patterns in a laser,” J. Opt. Soc. Am. B 7(6), 1034–1038 (1990).
[CrossRef]

C. Tamm, “Frequency locking of two transverse optical modes of a laser,” Phys. Rev. A 38(11), 5960–5963 (1988).
[CrossRef] [PubMed]

Tao, S. H.

Torner, L.

Torres, J. P.

Turunen, J.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51, 761–773 (2004).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, and J. Turunen, “Measuring the light field orbital angular momentum using DOE,” Opt. Mem. Neur. Net. 10, 241–255 (2001).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

Vasnetsov, M.

Vasnetsov, M. V.

M. V. Vasnetsov, J. P. Torres, D. V. Petrov, and L. Torner, “Observation of the orbital angular momentum spectrum of a light beam,” Opt. Lett. 28(23), 2285–2287 (2003).
[CrossRef] [PubMed]

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[CrossRef]

Weber, H.

Y. D. Liu, C. Q. Gao, M. W. Gao, X. Q. Qi, and H. Weber, “Superposition and detection of two helical beams for optical orbital angular momentum communication,” Opt. Commun. 281(14), 3636–3639 (2008).
[CrossRef]

C. Q. Gao, G. H. Wei, and H. Weber, “Generation of the stigmatic beam with orbital angular momentum,” Chin. Phys. Lett. 18(6), 771–773 (2001).
[CrossRef]

C. Gao, G. Wei, and H. Weber, “Orbital angular momentum of the beam and the second order intensity moments,” Sci. China A 43(12), 1306–1311 (2000).
[CrossRef]

Wei, G.

C. Gao, G. Wei, and H. Weber, “Orbital angular momentum of the beam and the second order intensity moments,” Sci. China A 43(12), 1306–1311 (2000).
[CrossRef]

Wei, G. H.

C. Q. Gao, G. H. Wei, and H. Weber, “Generation of the stigmatic beam with orbital angular momentum,” Chin. Phys. Lett. 18(6), 771–773 (2001).
[CrossRef]

Weiss, C. O.

Welland, K.

B. Jassemnejad, A. Bohannan, J. Lekkl, and K. Welland, “Mode sorter and detector based on photon orbital angular momentum,” Opt. Eng. 47(5), 1–5 (2008).
[CrossRef]

White, A. G.

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Yang, C. S.

Yuan, X. C.

Zambrini, R.

Chin. Phys. Lett.

C. Q. Gao, G. H. Wei, and H. Weber, “Generation of the stigmatic beam with orbital angular momentum,” Chin. Phys. Lett. 18(6), 771–773 (2001).
[CrossRef]

J. Mod. Opt.

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[CrossRef]

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51, 761–773 (2004).

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

M. W. Beijersbergen and L. Allen, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[CrossRef]

Y. D. Liu, C. Q. Gao, M. W. Gao, X. Q. Qi, and H. Weber, “Superposition and detection of two helical beams for optical orbital angular momentum communication,” Opt. Commun. 281(14), 3636–3639 (2008).
[CrossRef]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994).
[CrossRef]

Opt. Eng.

B. Jassemnejad, A. Bohannan, J. Lekkl, and K. Welland, “Mode sorter and detector based on photon orbital angular momentum,” Opt. Eng. 47(5), 1–5 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mem. Neur. Net.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, and J. Turunen, “Measuring the light field orbital angular momentum using DOE,” Opt. Mem. Neur. Net. 10, 241–255 (2001).

Phys. Rev. A

C. Tamm, “Frequency locking of two transverse optical modes of a laser,” Phys. Rev. A 38(11), 5960–5963 (1988).
[CrossRef] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the Orbital Angular Momentum of a Single Photon,” Phys. Rev. Lett. 88(25), 1–4 (2002).
[CrossRef]

Sci. China A

C. Gao, G. Wei, and H. Weber, “Orbital angular momentum of the beam and the second order intensity moments,” Sci. China A 43(12), 1306–1311 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of OAM multiplexing.

Fig. 2
Fig. 2

Scheme of the detection system.

Fig. 3
Fig. 3

Setup of the OAM information transmission system.

Fig. 4
Fig. 4

Experimental results of helical beams distributed symmetrically on a ring.

Fig. 5
Fig. 5

General far field diffractive pattern when rotating Porro prism 1 and Porro prism 2

Fig. 6
Fig. 6

Experimental results of OAM superposition detection

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S ( r , φ ) = n = N N exp ( i n φ ) exp [ i k r ρ n cos ( φ θ n ) ]
S ( r , φ ) exp ( i a ( Φ ) )

Metrics