Abstract

In this letter, we propose a new method that uses the stress applying parts (SAPs) in the polarization maintaining fibers (PMFs) cladding to realize the self-alignment of the side-polished face and the slow axis. This method enables the polarizers to be fabricated directly onto PMFs, and there are no interruptions to the optical path and no internal interfaces to reflect light. The polarizers offer a high polarization extinction ratio (PER) and high temperature stability. Theoretical and experimental results show that the new method dramatically reduces the polarization axis alignment (PAA) error and increases the success rate of making side-polished PMF polarizers with PER > 23 dB from 18.8% to 65.0%.

© OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. V. Cryan, R. P. Kenny, and C. D. Hussey, “Low loss fused D fiber couplers,” Electron. Lett. 29, 1432–1433 (1993).
    [CrossRef]
  2. T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32(12), 1707–1709 (2007).
    [CrossRef] [PubMed]
  3. Y. Wang, L. Xiao, D. N. Wang, and W. Jin, “In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber,” Opt. Lett. 32(9), 1035–1037 (2007).
    [CrossRef] [PubMed]
  4. S. G. Lee, J. P. Sokoloff, B. P. McGinnis, and H. Sasabe, “Fabrication of a side-polished fiber polarizer with a birefringent polymer overlay,” Opt. Lett. 22, 606–608 (1997).
    [PubMed]
  5. S. Blin, M. J. F. Digonnet, and G. S. Kino, “Noise Analysis of an Air-Core Fiber Optic Gyroscope,” IEEE Photon. Technol. Lett. 19, 1520–1522 (2007).
    [CrossRef]
  6. F. A. Muhammad and G. Stewart, “D-shaped optical fiber design for methane gas sensing,” Electron. Lett. 28, 1205–1206 (1992).
    [CrossRef]
  7. M. Sameer, S. M. Chandani, and N. A. F. Jaeger, Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photon. Technol. Lett. 17, 2706–2708 (2005).
    [CrossRef]
  8. S. P. Ma and S. M. Tseng, High-performance side-polished fibers and applications as liquid crystal clad fiber polarizers,” J. Lightwave Technol. 15, 1554–1558 (1997).
    [CrossRef]
  9. D. Gruchmann, K. Petermann, L. Staudigel, & E. Weidel, “Fiber optic polarizers with high extinction ratio,” 9th European conference on optical communication 1983, (ECOC).
  10. W. Eickhoff, “In-line fiber-optic polarizer,” Electron. Lett. 16, 762–764 (1980).
    [CrossRef]
  11. M. Alam, D. Guertin, J. Farroni, J. Abrarnczyk, N. Jacobson, and K. Tankala, “Small form-factor PANDA type HiBi fiber for sensing applications,” Conference on Industrial and Highway Sensors Technology, Oct 28–30, 2003 Providence, RI, Proc. SPIE 5272, 65–74 (2003).
  12. G. Wu and Z. Wang, “Propagation characteristics of multi-coating D-shaped optical fibres,” J. Opt. A, Pure Appl. Opt. 8(5), 450–453 (2006).
    [CrossRef]
  13. T. J. Wang, Q. Y. He, J. Y. Gao, Z. H. Kang, Y. Jiang, and H. Sun, “Comparison of electrooptically Q-switched Er:Cr:YSGG lasers by two polarizers: Glan-Taylor prism and Brewster angle structure,” Laser Phys. Lett. 3, 349–352 (2006).
    [CrossRef]
  14. X. Wang, W. Chaojun, and Z. Wang, “In-line fiber-optical polarizer with high-extinction ratios and low-insertion loss,” Microw. Opt. Technol. Lett. 51(7), 1763–1765 (2009).
    [CrossRef]
  15. N. Caponio and C. Svelto, “A simple angular alignment technique for a polarization-maintaining-fiber,” IEEE Photon. Technol. Lett. 6(6), 728–729 (1994).
    [CrossRef]

2009 (1)

X. Wang, W. Chaojun, and Z. Wang, “In-line fiber-optical polarizer with high-extinction ratios and low-insertion loss,” Microw. Opt. Technol. Lett. 51(7), 1763–1765 (2009).
[CrossRef]

2007 (3)

2006 (2)

G. Wu and Z. Wang, “Propagation characteristics of multi-coating D-shaped optical fibres,” J. Opt. A, Pure Appl. Opt. 8(5), 450–453 (2006).
[CrossRef]

T. J. Wang, Q. Y. He, J. Y. Gao, Z. H. Kang, Y. Jiang, and H. Sun, “Comparison of electrooptically Q-switched Er:Cr:YSGG lasers by two polarizers: Glan-Taylor prism and Brewster angle structure,” Laser Phys. Lett. 3, 349–352 (2006).
[CrossRef]

2005 (1)

M. Sameer, S. M. Chandani, and N. A. F. Jaeger, Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photon. Technol. Lett. 17, 2706–2708 (2005).
[CrossRef]

2003 (1)

M. Alam, D. Guertin, J. Farroni, J. Abrarnczyk, N. Jacobson, and K. Tankala, “Small form-factor PANDA type HiBi fiber for sensing applications,” Conference on Industrial and Highway Sensors Technology, Oct 28–30, 2003 Providence, RI, Proc. SPIE 5272, 65–74 (2003).

1997 (2)

S. G. Lee, J. P. Sokoloff, B. P. McGinnis, and H. Sasabe, “Fabrication of a side-polished fiber polarizer with a birefringent polymer overlay,” Opt. Lett. 22, 606–608 (1997).
[PubMed]

S. P. Ma and S. M. Tseng, High-performance side-polished fibers and applications as liquid crystal clad fiber polarizers,” J. Lightwave Technol. 15, 1554–1558 (1997).
[CrossRef]

1994 (1)

N. Caponio and C. Svelto, “A simple angular alignment technique for a polarization-maintaining-fiber,” IEEE Photon. Technol. Lett. 6(6), 728–729 (1994).
[CrossRef]

1993 (1)

C. V. Cryan, R. P. Kenny, and C. D. Hussey, “Low loss fused D fiber couplers,” Electron. Lett. 29, 1432–1433 (1993).
[CrossRef]

1992 (1)

F. A. Muhammad and G. Stewart, “D-shaped optical fiber design for methane gas sensing,” Electron. Lett. 28, 1205–1206 (1992).
[CrossRef]

1980 (1)

W. Eickhoff, “In-line fiber-optic polarizer,” Electron. Lett. 16, 762–764 (1980).
[CrossRef]

Abrarnczyk, J.

M. Alam, D. Guertin, J. Farroni, J. Abrarnczyk, N. Jacobson, and K. Tankala, “Small form-factor PANDA type HiBi fiber for sensing applications,” Conference on Industrial and Highway Sensors Technology, Oct 28–30, 2003 Providence, RI, Proc. SPIE 5272, 65–74 (2003).

Alam, M.

M. Alam, D. Guertin, J. Farroni, J. Abrarnczyk, N. Jacobson, and K. Tankala, “Small form-factor PANDA type HiBi fiber for sensing applications,” Conference on Industrial and Highway Sensors Technology, Oct 28–30, 2003 Providence, RI, Proc. SPIE 5272, 65–74 (2003).

Alkeskjold, T. T.

Bjarklev, A.

Blin, S.

S. Blin, M. J. F. Digonnet, and G. S. Kino, “Noise Analysis of an Air-Core Fiber Optic Gyroscope,” IEEE Photon. Technol. Lett. 19, 1520–1522 (2007).
[CrossRef]

Caponio, N.

N. Caponio and C. Svelto, “A simple angular alignment technique for a polarization-maintaining-fiber,” IEEE Photon. Technol. Lett. 6(6), 728–729 (1994).
[CrossRef]

Chandani, S. M.

M. Sameer, S. M. Chandani, and N. A. F. Jaeger, Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photon. Technol. Lett. 17, 2706–2708 (2005).
[CrossRef]

Chaojun, W.

X. Wang, W. Chaojun, and Z. Wang, “In-line fiber-optical polarizer with high-extinction ratios and low-insertion loss,” Microw. Opt. Technol. Lett. 51(7), 1763–1765 (2009).
[CrossRef]

Cryan, C. V.

C. V. Cryan, R. P. Kenny, and C. D. Hussey, “Low loss fused D fiber couplers,” Electron. Lett. 29, 1432–1433 (1993).
[CrossRef]

Digonnet, M. J. F.

S. Blin, M. J. F. Digonnet, and G. S. Kino, “Noise Analysis of an Air-Core Fiber Optic Gyroscope,” IEEE Photon. Technol. Lett. 19, 1520–1522 (2007).
[CrossRef]

Eickhoff, W.

W. Eickhoff, “In-line fiber-optic polarizer,” Electron. Lett. 16, 762–764 (1980).
[CrossRef]

Farroni, J.

M. Alam, D. Guertin, J. Farroni, J. Abrarnczyk, N. Jacobson, and K. Tankala, “Small form-factor PANDA type HiBi fiber for sensing applications,” Conference on Industrial and Highway Sensors Technology, Oct 28–30, 2003 Providence, RI, Proc. SPIE 5272, 65–74 (2003).

Gao, J. Y.

T. J. Wang, Q. Y. He, J. Y. Gao, Z. H. Kang, Y. Jiang, and H. Sun, “Comparison of electrooptically Q-switched Er:Cr:YSGG lasers by two polarizers: Glan-Taylor prism and Brewster angle structure,” Laser Phys. Lett. 3, 349–352 (2006).
[CrossRef]

Guertin, D.

M. Alam, D. Guertin, J. Farroni, J. Abrarnczyk, N. Jacobson, and K. Tankala, “Small form-factor PANDA type HiBi fiber for sensing applications,” Conference on Industrial and Highway Sensors Technology, Oct 28–30, 2003 Providence, RI, Proc. SPIE 5272, 65–74 (2003).

He, Q. Y.

T. J. Wang, Q. Y. He, J. Y. Gao, Z. H. Kang, Y. Jiang, and H. Sun, “Comparison of electrooptically Q-switched Er:Cr:YSGG lasers by two polarizers: Glan-Taylor prism and Brewster angle structure,” Laser Phys. Lett. 3, 349–352 (2006).
[CrossRef]

Hussey, C. D.

C. V. Cryan, R. P. Kenny, and C. D. Hussey, “Low loss fused D fiber couplers,” Electron. Lett. 29, 1432–1433 (1993).
[CrossRef]

Jacobson, N.

M. Alam, D. Guertin, J. Farroni, J. Abrarnczyk, N. Jacobson, and K. Tankala, “Small form-factor PANDA type HiBi fiber for sensing applications,” Conference on Industrial and Highway Sensors Technology, Oct 28–30, 2003 Providence, RI, Proc. SPIE 5272, 65–74 (2003).

Jaeger, N. A. F.

M. Sameer, S. M. Chandani, and N. A. F. Jaeger, Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photon. Technol. Lett. 17, 2706–2708 (2005).
[CrossRef]

Jiang, Y.

T. J. Wang, Q. Y. He, J. Y. Gao, Z. H. Kang, Y. Jiang, and H. Sun, “Comparison of electrooptically Q-switched Er:Cr:YSGG lasers by two polarizers: Glan-Taylor prism and Brewster angle structure,” Laser Phys. Lett. 3, 349–352 (2006).
[CrossRef]

Jin, W.

Kang, Z. H.

T. J. Wang, Q. Y. He, J. Y. Gao, Z. H. Kang, Y. Jiang, and H. Sun, “Comparison of electrooptically Q-switched Er:Cr:YSGG lasers by two polarizers: Glan-Taylor prism and Brewster angle structure,” Laser Phys. Lett. 3, 349–352 (2006).
[CrossRef]

Kenny, R. P.

C. V. Cryan, R. P. Kenny, and C. D. Hussey, “Low loss fused D fiber couplers,” Electron. Lett. 29, 1432–1433 (1993).
[CrossRef]

Kino, G. S.

S. Blin, M. J. F. Digonnet, and G. S. Kino, “Noise Analysis of an Air-Core Fiber Optic Gyroscope,” IEEE Photon. Technol. Lett. 19, 1520–1522 (2007).
[CrossRef]

Lee, S. G.

Ma, S. P.

S. P. Ma and S. M. Tseng, High-performance side-polished fibers and applications as liquid crystal clad fiber polarizers,” J. Lightwave Technol. 15, 1554–1558 (1997).
[CrossRef]

McGinnis, B. P.

Muhammad, F. A.

F. A. Muhammad and G. Stewart, “D-shaped optical fiber design for methane gas sensing,” Electron. Lett. 28, 1205–1206 (1992).
[CrossRef]

Sameer, M.

M. Sameer, S. M. Chandani, and N. A. F. Jaeger, Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photon. Technol. Lett. 17, 2706–2708 (2005).
[CrossRef]

Sasabe, H.

Sokoloff, J. P.

Stewart, G.

F. A. Muhammad and G. Stewart, “D-shaped optical fiber design for methane gas sensing,” Electron. Lett. 28, 1205–1206 (1992).
[CrossRef]

Sun, H.

T. J. Wang, Q. Y. He, J. Y. Gao, Z. H. Kang, Y. Jiang, and H. Sun, “Comparison of electrooptically Q-switched Er:Cr:YSGG lasers by two polarizers: Glan-Taylor prism and Brewster angle structure,” Laser Phys. Lett. 3, 349–352 (2006).
[CrossRef]

Svelto, C.

N. Caponio and C. Svelto, “A simple angular alignment technique for a polarization-maintaining-fiber,” IEEE Photon. Technol. Lett. 6(6), 728–729 (1994).
[CrossRef]

Tankala, K.

M. Alam, D. Guertin, J. Farroni, J. Abrarnczyk, N. Jacobson, and K. Tankala, “Small form-factor PANDA type HiBi fiber for sensing applications,” Conference on Industrial and Highway Sensors Technology, Oct 28–30, 2003 Providence, RI, Proc. SPIE 5272, 65–74 (2003).

Tseng, S. M.

S. P. Ma and S. M. Tseng, High-performance side-polished fibers and applications as liquid crystal clad fiber polarizers,” J. Lightwave Technol. 15, 1554–1558 (1997).
[CrossRef]

Wang, D. N.

Wang, T. J.

T. J. Wang, Q. Y. He, J. Y. Gao, Z. H. Kang, Y. Jiang, and H. Sun, “Comparison of electrooptically Q-switched Er:Cr:YSGG lasers by two polarizers: Glan-Taylor prism and Brewster angle structure,” Laser Phys. Lett. 3, 349–352 (2006).
[CrossRef]

Wang, X.

X. Wang, W. Chaojun, and Z. Wang, “In-line fiber-optical polarizer with high-extinction ratios and low-insertion loss,” Microw. Opt. Technol. Lett. 51(7), 1763–1765 (2009).
[CrossRef]

Wang, Y.

Wang, Z.

X. Wang, W. Chaojun, and Z. Wang, “In-line fiber-optical polarizer with high-extinction ratios and low-insertion loss,” Microw. Opt. Technol. Lett. 51(7), 1763–1765 (2009).
[CrossRef]

G. Wu and Z. Wang, “Propagation characteristics of multi-coating D-shaped optical fibres,” J. Opt. A, Pure Appl. Opt. 8(5), 450–453 (2006).
[CrossRef]

Wu, G.

G. Wu and Z. Wang, “Propagation characteristics of multi-coating D-shaped optical fibres,” J. Opt. A, Pure Appl. Opt. 8(5), 450–453 (2006).
[CrossRef]

Xiao, L.

Conference on Industrial and Highway Sensors Technology, (1)

M. Alam, D. Guertin, J. Farroni, J. Abrarnczyk, N. Jacobson, and K. Tankala, “Small form-factor PANDA type HiBi fiber for sensing applications,” Conference on Industrial and Highway Sensors Technology, Oct 28–30, 2003 Providence, RI, Proc. SPIE 5272, 65–74 (2003).

Electron. Lett. (3)

F. A. Muhammad and G. Stewart, “D-shaped optical fiber design for methane gas sensing,” Electron. Lett. 28, 1205–1206 (1992).
[CrossRef]

C. V. Cryan, R. P. Kenny, and C. D. Hussey, “Low loss fused D fiber couplers,” Electron. Lett. 29, 1432–1433 (1993).
[CrossRef]

W. Eickhoff, “In-line fiber-optic polarizer,” Electron. Lett. 16, 762–764 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Blin, M. J. F. Digonnet, and G. S. Kino, “Noise Analysis of an Air-Core Fiber Optic Gyroscope,” IEEE Photon. Technol. Lett. 19, 1520–1522 (2007).
[CrossRef]

N. Caponio and C. Svelto, “A simple angular alignment technique for a polarization-maintaining-fiber,” IEEE Photon. Technol. Lett. 6(6), 728–729 (1994).
[CrossRef]

M. Sameer, S. M. Chandani, and N. A. F. Jaeger, Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photon. Technol. Lett. 17, 2706–2708 (2005).
[CrossRef]

J. Lightwave Technol. (1)

S. P. Ma and S. M. Tseng, High-performance side-polished fibers and applications as liquid crystal clad fiber polarizers,” J. Lightwave Technol. 15, 1554–1558 (1997).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. Wu and Z. Wang, “Propagation characteristics of multi-coating D-shaped optical fibres,” J. Opt. A, Pure Appl. Opt. 8(5), 450–453 (2006).
[CrossRef]

Laser Phys. Lett. (1)

T. J. Wang, Q. Y. He, J. Y. Gao, Z. H. Kang, Y. Jiang, and H. Sun, “Comparison of electrooptically Q-switched Er:Cr:YSGG lasers by two polarizers: Glan-Taylor prism and Brewster angle structure,” Laser Phys. Lett. 3, 349–352 (2006).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

X. Wang, W. Chaojun, and Z. Wang, “In-line fiber-optical polarizer with high-extinction ratios and low-insertion loss,” Microw. Opt. Technol. Lett. 51(7), 1763–1765 (2009).
[CrossRef]

Opt. Lett. (3)

Other (1)

D. Gruchmann, K. Petermann, L. Staudigel, & E. Weidel, “Fiber optic polarizers with high extinction ratio,” 9th European conference on optical communication 1983, (ECOC).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

PMF stretched over a curved aluminium substrate and bonded. F is the stretching force, and T1 and T2 are the tensions in SAP1 and SAP2, respectively. θ is the wrap angle, and R is the radius of curvature of the substrate.

Fig. 2
Fig. 2

Cross sectional view from A-A of the PMF, the polishing wheel and the aluminium substrate. a is the radius of the SAP; b is the distance between the center of the fiber core and the center of the SAP; c is the radius of the cladding; ϕ is the angle between the slow axis and the x axis; and N is the normal force component of T.

Fig. 3
Fig. 3

Experimental setup used to align the PMF.

Fig. 4
Fig. 4

Experimental setup used to monitor the polishing depth during polishing.

Fig. 5
Fig. 5

Experimental setup used to measure the output PER of the side-polished PMF polarizers.

Fig. 6
Fig. 6

Experimental results for the side-polished PMF polarizer No. 0907. a. Polar plot of the normalized output light intensity of the polarizer. b. Temperature stability of the polarizer.

Tables (1)

Tables Icon

Table 1 Experimental results of 3 batches of side-polished PMF polarizers.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P E R max ( d B ) | 10 log ( tan 2 ϕ ) |
σ = Y l + y d θ d L = Y l d L + Y y R
T 1 = Y l d L S + Y R S ( c + b sin ϕ )
T 2 = Y l d L S + Y R S ( c b sin ϕ )
d N = 2 T sin d θ 2 T d θ
d M = d N 1 b cos ϕ d N 2 b cos ϕ = 2 b 2 Y S 1 R cos ϕ sin ϕ d θ
M = 0 L + Δ L 2 b 2 Y S 1 R cos ϕ sin ϕ d L R = 2 b 2 Y S L + Δ L R 2 cos ϕ sin ϕ
P E R ( d B ) = 10 log ( P max ( m W ) P min ( m W ) ) = P max ( d B m ) P min ( d B m )

Metrics