Abstract

We report a photometric study of ultra-efficient light emitting diodes (LEDs) that exhibit superior color rendering index (CRI) and luminous efficacy of optical radiation (LER) using semiconductor quantum dot nanocrystal (NC) luminophores. Over 200 million systematically varied NC-LED designs have been simulated to understand feasible performance in terms of CRI vs. LER. We evaluated the effects of design parameters including peak emission wavelength, full-width-at-half-maximum, and relative amplitudes of each NC color component on LED performance. Warm-white LEDs with CRI >90 and LER >380 lm/W at a correlated color temperature of 3000 K are shown to be achieved using nanocrystal luminophores.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Zimov, E. A. G. Schuur, and F. S. Chapin, “Climate change. Permafrost and the global carbon budget,” Science 312(5780), 1612–1613 (2006).
    [CrossRef] [PubMed]
  2. F. Scrimgeour, L. Oxley, and K. Fatai, “Reducing carbon emissions? The relative effectiveness of different types of environmental tax: The case of New Zealand,” Environ. Model. Softw. 20(11), 1439–1448 (2005).
    [CrossRef]
  3. S. Pacala and R. Socolow, “Stabilization wedges: solving the climate problem for the next 50 years with current technologies,” Science 305(5686), 968–972 (2004).
    [CrossRef] [PubMed]
  4. M. H. Crawford, “LEDs for solid state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
    [CrossRef]
  5. S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92(3), 031102 (2008).
    [CrossRef]
  6. J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1(4), 307–333 (2007).
    [CrossRef]
  7. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
    [CrossRef]
  8. S. J. Rosenthal, “Bar-coding biomolecules with fluorescent nanocrystals,” Nat. Biotechnol. 19(7), 621–622 (2001).
    [CrossRef] [PubMed]
  9. E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, 2006).
  10. A. R. Robertson, “Computation of correlated color temperature and distribution temperature,” J. Opt. Soc. Am. 58(11), 1528–1535 (1968).
    [CrossRef]

2009

M. H. Crawford, “LEDs for solid state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[CrossRef]

2008

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92(3), 031102 (2008).
[CrossRef]

2007

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

2006

S. A. Zimov, E. A. G. Schuur, and F. S. Chapin, “Climate change. Permafrost and the global carbon budget,” Science 312(5780), 1612–1613 (2006).
[CrossRef] [PubMed]

2005

F. Scrimgeour, L. Oxley, and K. Fatai, “Reducing carbon emissions? The relative effectiveness of different types of environmental tax: The case of New Zealand,” Environ. Model. Softw. 20(11), 1439–1448 (2005).
[CrossRef]

2004

S. Pacala and R. Socolow, “Stabilization wedges: solving the climate problem for the next 50 years with current technologies,” Science 305(5686), 968–972 (2004).
[CrossRef] [PubMed]

2002

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

2001

S. J. Rosenthal, “Bar-coding biomolecules with fluorescent nanocrystals,” Nat. Biotechnol. 19(7), 621–622 (2001).
[CrossRef] [PubMed]

1968

Chapin, F. S.

S. A. Zimov, E. A. G. Schuur, and F. S. Chapin, “Climate change. Permafrost and the global carbon budget,” Science 312(5780), 1612–1613 (2006).
[CrossRef] [PubMed]

Coltrin, M. F.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Crawford, M. H.

M. H. Crawford, “LEDs for solid state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[CrossRef]

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Demir, H. V.

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92(3), 031102 (2008).
[CrossRef]

Fatai, K.

F. Scrimgeour, L. Oxley, and K. Fatai, “Reducing carbon emissions? The relative effectiveness of different types of environmental tax: The case of New Zealand,” Environ. Model. Softw. 20(11), 1439–1448 (2005).
[CrossRef]

Fischer, A. J.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Gaska, R.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Ivanauskas, F.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Krames, M. R.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Mueller, G. O.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Mueller-Mach, R.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Nizamoglu, S.

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92(3), 031102 (2008).
[CrossRef]

Ohno, Y.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Oxley, L.

F. Scrimgeour, L. Oxley, and K. Fatai, “Reducing carbon emissions? The relative effectiveness of different types of environmental tax: The case of New Zealand,” Environ. Model. Softw. 20(11), 1439–1448 (2005).
[CrossRef]

Pacala, S.

S. Pacala and R. Socolow, “Stabilization wedges: solving the climate problem for the next 50 years with current technologies,” Science 305(5686), 968–972 (2004).
[CrossRef] [PubMed]

Phillips, J. M.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Robertson, A. R.

Rohwer, L. E. S.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Rosenthal, S. J.

S. J. Rosenthal, “Bar-coding biomolecules with fluorescent nanocrystals,” Nat. Biotechnol. 19(7), 621–622 (2001).
[CrossRef] [PubMed]

Schuur, E. A. G.

S. A. Zimov, E. A. G. Schuur, and F. S. Chapin, “Climate change. Permafrost and the global carbon budget,” Science 312(5780), 1612–1613 (2006).
[CrossRef] [PubMed]

Scrimgeour, F.

F. Scrimgeour, L. Oxley, and K. Fatai, “Reducing carbon emissions? The relative effectiveness of different types of environmental tax: The case of New Zealand,” Environ. Model. Softw. 20(11), 1439–1448 (2005).
[CrossRef]

Shur, M. S.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Simmons, J. A.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Socolow, R.

S. Pacala and R. Socolow, “Stabilization wedges: solving the climate problem for the next 50 years with current technologies,” Science 305(5686), 968–972 (2004).
[CrossRef] [PubMed]

Tsao, J. Y.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Vaicekauskas, R.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Zengin, G.

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92(3), 031102 (2008).
[CrossRef]

Zimov, S. A.

S. A. Zimov, E. A. G. Schuur, and F. S. Chapin, “Climate change. Permafrost and the global carbon budget,” Science 312(5780), 1612–1613 (2006).
[CrossRef] [PubMed]

Žukauskas, A.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Appl. Phys. Lett.

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92(3), 031102 (2008).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80(2), 234–236 (2002).
[CrossRef]

Environ. Model. Softw.

F. Scrimgeour, L. Oxley, and K. Fatai, “Reducing carbon emissions? The relative effectiveness of different types of environmental tax: The case of New Zealand,” Environ. Model. Softw. 20(11), 1439–1448 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. H. Crawford, “LEDs for solid state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[CrossRef]

J. Opt. Soc. Am.

Laser & Photon. Rev.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid-state lighting,” Laser & Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Nat. Biotechnol.

S. J. Rosenthal, “Bar-coding biomolecules with fluorescent nanocrystals,” Nat. Biotechnol. 19(7), 621–622 (2001).
[CrossRef] [PubMed]

Science

S. A. Zimov, E. A. G. Schuur, and F. S. Chapin, “Climate change. Permafrost and the global carbon budget,” Science 312(5780), 1612–1613 (2006).
[CrossRef] [PubMed]

S. Pacala and R. Socolow, “Stabilization wedges: solving the climate problem for the next 50 years with current technologies,” Science 305(5686), 968–972 (2004).
[CrossRef] [PubMed]

Other

E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

CRI vs. LER dependence between (a) 2450 K<CCT<2550 K, (b) 2950 K<CCT<3050 K, and (c) 3450 K<CCT<3550 K.

Fig. 2
Fig. 2

Relations between (a) CRI and CCT, (b) CRI and LER, and (c) LER and CCT.

Fig. 3
Fig. 3

(a) CRI vs. LER relationship and (b) LER vs. CCT relationship for white data points (shown in red) and near-white points (shown in blue).

Fig. 4
Fig. 4

The relative spectral power distribution for the average values of input parameters in the case of (a) CRI>80 and LER>300 lm/W and (b) CRI>90 and LER>380 lm/W.

Tables (2)

Tables Icon

Table 1 Average and standard deviation values of the input parameters of the spectra satisfying the conditions of CRI>80 and LER>300 lm/W, and CRI>90 and LER>380 lm/W.

Tables Icon

Table 2 Exemplary results of the photometric computations. In the columns of WL, relative amplitude, and FWHM, the first numbers belong to the corresponding property of the blue spectrum. The other numbers in those columns stand for green, yellow, and red spectral content, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x ' = y + 1.67 x 0.885 1.9495
y ' = y 0.607 x 0.109 1.1648
x ' 2 0.1339 2 + y ' 2 0.0944 2 1

Metrics